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ABSTRACT

Interpolation methods are widely used in geoscience applica-
tions to reconstruct multivariate data from irregular samples. This
paper describes a quantitative methodology for assessing the per-
formance of various state-of-the-art interpolation methods. The
methodology consists of simulation-validation and cross-validation
using simulated and real data respectively, and has recently been
applied to study the reconstruction of total electron content maps of
the ionosphere. These two approaches are described and a study of
the various artefacts associated with different interpolation methods
also presented, including their origins and typical locations. Finally,
the use of the statistical moments of error histograms as a method
of evaluating techniques for biases and skew is described, as well as
providing confidence bounds on error values. The methodology and
artefact analysis should be of use to anyone who uses multivariate
interpolation methods.

Index Terms— Image reconstruction, interpolation, remote
sensing, geophysics

1. INTRODUCTION

Scattered data sets are common in geosciences, arising wherever
irregular sampling patterns are employed or point measurements
made. Application areas where such data are found are very di-
verse and include, for example, salinity data returned from the over
3100 freely moving Argo floats, core samples of mineral deposits,
aquifer head height measurements, global precipitation measures
(see, e.g. [1]) and line of sight measurements of the total electron
content (TEC) of the ionosphere.

As scattered data-sets rarely include samples in the desired con-
figuration, multivariate interpolation methods (MIM) are commonly
applied for reconstruction, or calculating values at desired positions.
Some example geoscience applications that employ MIM include
visualisation, gridding, contouring, slicing, mapping, modelling, re-
construction and analysis. In fact, a great many data-products which
are in widespread, daily use are the result of various degrees of in-
terpolation.

Although many geoscientists may use MIM on a regular basis,
the relative performances and nuances of the different MIM that are
available and the affect that data sparsity can have on the quality
of reconstructed data are not always widely appreciated. As these
issues and effects can influence the quality of the scientific work
it is important that practitioners understand both how the various
MIM operate as well as the problems that are associated with specific
techniques. This paper attempts to address these issues by posing
and answering the following four questions:
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1. How can the relative performance of MIM be assessed under
varying input conditions?

2. How can the performance of MIM on real data be verified?
3. What artefacts and behaviour do different MIM exhibit?
4. How can MIM be checked for biases and inconsistencies?

The first two questions were the subject of a recent study on the
reconstruction of ionospheric TEC maps, which proposed a method-
ology for the quantitative assessment of the performance of MIM [2].
This methodology employed both simulated and real data and is de-
scribed in section 2. The interpolation methods that were considered
included several triangulation-based MIM including linear, cubic [3]
and natural-neighbour (NN) interpolation [4]; radial basis function
interpolation [5], biharmonic spline interpolation[6], ordinary krig-
ing [7, 8] as well as adaptive normalised convolution (ANC) [9], a
technique based on convolution with rotated filters that is new to
geoscience applications. Although a quantitative evaluation is the
method of choice for determining the performance of MIM, it is un-
able to provide specific information on the types of artefacts pro-
duced by various MIM and the situations in which they are likely
to occur; these are discussed in section 3. The error distributions of
the MIM are also considered in section 4 and conclusions drawn in
section 5.

2. QUANTITATIVE EVALUATION METHODOLOGY

Quantitative evaluation methodologies can conveniently be divided
into two main classes: those which require a full and correct out-
put to be known a priori, and those which can operate on real data
for which the correct outputs are unknown. These are known as
simulation-validation (SV) and cross-validation (CV), respectively.
To fully characterise the performance of MIM, the methodology
in [2] proposed a combination of the two approaches, first using SV
in conjunction with simulated data to quantify the performance of the
MIM and then secondly – as simulated data are only an approxima-
tion of the data found in real studies – examining their performance
on real data using CV.

2.1. Simulation Validation

SV facilitates validation using a ground truth, as the entire input field
is generated and sampled as appropriate. This allows for a complete
characterisation of output errors, as error values are available for ev-
ery output point. Fields of data, in which the statistical properties
can be tightly controlled, are generated and then randomly sampled
to produce data with varying degrees of sparsity. The sampled fields
are then reconstructed using various different interpolation methods
and the output fields compared to the original inputs. By recon-
structing from many different sets of samples and over a range of
sparsities, the performance of the various MIM can be characterised.



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.95  0.955  0.96  0.965  0.97  0.975  0.98  0.985  0.99  0.995

P
ro

po
rt

io
na

l R
M

S
E

Sparsity

ANC
Cubic

Kriging
Natural Neighbour
Biharmonic Spline

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.982  0.984  0.986  0.988  0.99  0.992  0.994  0.996  0.998

P
ro

po
rt

io
na

l R
M

S
E

 (
T

E
C

U
)

Sparsity

ANC
Cubic

Kriging
Natural Neighbour
Biharmonic Spline

Fig. 1. Normalised RMSE for simulated data (left), and TEC data (right)

Figure 1 presents the proportional root mean square error
(RMSE) for different MIM where, for clarity, only five techniques
are shown. At each sparsity, the result is the average of multi-
ple reconstructions from different samples, thus ensuring that any
sampling effects were removed from the output. The results show
the expected increase in error with increasing sparsity. While the
relative performance of the different MIM remains reasonably con-
stant over the range of sparsities, there are some anomalous results,
particularly when using kriging.

SV using ground truth data provides enough results to allow the
spatial and statistical distribution of errors to be examined. Of partic-
ular importance is the examination of the statistical error distribution
to check the bias of a given MIM. This is discussed in more detail in
section 4.

2.2. Cross-validation

CV enables performance analysis using only input data and works by
partitioning the data into two sets, an input set and a validation set.
The output field is then formed by reconstructing using the input set
and the output errors are calculated by subtracting the points in the
validation set from the output. By altering the relative sizes of the in-
put and validation sets it is possible to change the sparsity of the data
used for the reconstruction. An example study was conducted by ap-
plying a number of MIM to ionospheric TEC data, extracted from
global positioning system (GPS) signals. Here, k-fold CV was used,
where the data are first randomised and then partitioned into several
blocks. The MIM are applied to the first block and the remaining
blocks used to calculate the errors at the corresponding positions.
This process is repeated for various different combinations of block
configuration, in order to generate enough data for the reliable cal-
culation of error statistics.

Results from [2] generated using CV are shown in Figure 1
(right) and differ from the simulated results in several respects.
Firstly, there is much less of a clear trend of increasing error with
sparsity. Secondly, the results are much noisier, because of the
nature of the real TEC data. Finally, the relative performance of
the MIM is different, with ANC showing the lowest errors, thus
confirming the need for evaluation on real data in addition to sim-
ulation. However, some similarities are also present, such as the
RMSE spikes in the kriging method.

3. RECONSTRUCTION ARTEFACTS

Examining the outputs of different MIM spatially, as well as in re-
lation to one another, can yield useful and important information
on specific problems and artefacts occasionally manifested in some
schemes. Knowledge of the kind of problems which present them-
selves, and with which MIM could prove vitally important. Some
examples of problems occurring in different schemes include: peaks
around data-points in the output of NN interpolation; overshoot in
cubic interpolation methods and highly-inaccurate output fields due
to ill- or non-fitting models in kriging.

To illustrate how surfaces reconstructed using various interpo-
lation methods differ relative to the input, and one-another, Fig. 2
shows example Shuttle Radar Topography Mission (SRTM) data,
sampled to a sparsity of approximately 99% and then reconstructed
using five different MIM. Whilst there are no major differences be-
tween the surfaces produced by the interpolation methods, some sub-
tle differences are evident.

Fig. 2b was interpolated using linear interpolation based on tri-
angulation. Linear interpolation is analogous to fixing triangular
plates together over a frame whose vertices are the data points, and
with edges following those of the triangles. This gives rise to the
characteristic faceted surfaces that are evident in the figure. Recon-
struction using radial basis function (RBF) interpolation, Fig. 2c,
produces a similar output to the triangulation-based output but does
not appear faceted, since the interpolation is not based on triangula-
tion. The main disadvantage of linear RBF interpolation is the fact
that being a global method, it is computationally expensive.

Fig. 2d was interpolated using TPS RBF. This technique
produces results which are almost identical to biharmonic spline
interpolation (BSI), and are characterised by smooth, isotropic sur-
faces. TPS uses a cubic spline basis function and so has a tendency
to overshoot when it tries to maintain continuous derivatives at edge
points. A good physical analogy to spline-based interpolation is
imagining the image having been interpolated using metal sheets,
which are able to bend a certain amount, and whose joins with other
plates must be continuous to at least the first derivative.

NN interpolation, see Fig. 2e, again uses the Delaunay triangula-
tion, but uses the ratio of overlapping areas to determine the weight-
ing of data points. This results in surfaces which vary more smoothly
than linear interpolation. The most obvious artefacts caused by NN
interpolation are sharp peaks around the input datum. The surfaces
produced are similar in appearance to a rubber sheet, stretched over
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Fig. 2. False colour surfaces for SRTM elevation data. (a) Original
input data. Reconstructed outputs from (b) linear triangulation based
interpolation; (c) linear RBF interpolation; (d) TPS RBF interpola-
tion; (e) NN interpolation; (f) ANC interpolation.

and attached to the input datum. This is because NN interpola-
tion creates output values based on the area of overlap between the
Voronoi cells before and after the input point is added to the image.

Fig. 2f was interpolated using ANC [2, 9] which uses convolu-
tion with rotated and scaled Gaussian kernels to perform interpola-
tion. It produces outputs which include anisotropy where necessary,
and in this case its output is somewhere between those of NN and
TPS interpolation. Artefacts produced by ANC generally result from
poorly chosen filter size limits, and usually manifest as narrow peaks
around most datum. In extreme cases, where filters are forced to be
far too large, the data are over-smoothed. This results in outputs
whose values can be significantly below those of the input data.

Examination of the reconstructed surfaces in Fig. 2 shows that
artefacts tend to occur in regions characterised by a high rate of
change, or at local extrema. To further illustrate these effects, Fig. 3
shows some examples of peaks and edges which have been recon-
structed using various interpolation methods. Fig. 3a shows the ef-
fect that using different methods has on the smoothness of interpo-
lated peaks. This particularly illustrates the effect that NN interpola-
tion has around input datum, where it tends to produce steep peaks.
Generally the areas around these peaks will be underestimates of the
input values. Fig. 3b shows the possible overshoot effect that oc-
curs when interpolating steep edges using cubic (and higher order
polynomial) interpolation.

Knowing the artefacts that different interpolation methods can
cause, as well as when, where and how they occur can be very
useful in situations where analysis techniques are sensitive to spe-
cific effects. In these cases, the ability to choose the interpolation
method which best suits the application is very important. In situ-
ations where it is important that no overshoots are introduced, and
no extraneous spikes are added, the most stable technique to use is

(a) (b)

Fig. 3. Images demonstrating (a) peak artefacts and (b) overshoot
problems occurring at edges. Images were interpolated using (bot-
tom) NN interpolation, (middle) TPS RBF, and (top) cubic in (a)
linear in (b).

probably linear interpolation. Use of linear RBF interpolation will
have the added advantage that the output will not contain the faceted
appearance that typifies triangulation-based linear interpolation.

4. INTERPOLATION ERROR DISTRIBUTIONS

One very effective way of examining interpolation methods for pos-
sible problems is to create a histogram of the errors between an in-
terpolated output, and a simulated full-field input. The histogram
should describe an approximate Gaussian distribution centred on
zero. Information about any possible interpolation errors can be ob-
tained by examining the distribution using the first few standardised
moments. The first of these moments, the mean, defines the centre
point of the distribution, and should be approximately zero. If this
is not close to zero, then the interpolation method is biased. In this
case, the result should be discarded, and the technique’s implemen-
tation checked for errors.

The variance is useful for characterising the spread of error val-
ues, and can be used to derive confidence limits. Confidence limits
are often more useful when calculated using the absolute error distri-
bution. The third moment, the “skewness”, describes the asymmetry
of a distribution. A non-zero skewness is indicative of a tendency
for the interpolation method to under- or over-estimate output values
which do not lie on input datum. This is the most common problem
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Fig. 4. Histograms showing error distributions from reconstructing
Fig. 2a, using kriging and linear triangulation-based interpolation.
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Fig. 5. Example reconstruction errors using kriging interpolation. (a) Reconstructed and original images, (b) normalised histogram showing
the distribution of error values between the two images in (a) and (c) semivariogram showing incorrectly fitted spherical model.

seen in interpolation outputs, and typically occurs when convex or
concave surfaces are fitted to approximately linearly varying data.
Finally, the fourth moment, the “kurtosis” describes the distribution
of outliers. A kurtosis value of greater than three indicates the pro-
portion of outliers is higher than for a standard Gaussian distribution.

Fig. 4 shows two example normalised histograms of recon-
structed data from the SRTM. Whilst they are quite similar in extent,
they also show some differences, particularly on the right-hand side
of the linear interpolation error distribution. This corresponds to a
variance of 7.78, a skewness of -0.01, and a kurtosis of 5.22. The
kriging distribution has a variance of 9.07, a skewness of -0.3, and
a kurtosis of 4.21. This indicates that the kriging distribution has
a lower spread than the linear interpolation distribution, outside of
the body of the distribution, which is slightly wider in the case of
kriging.

Fig. 5a shows an example reconstruction using ordinary kriging
interpolation. Visual comparison with the original image reveals that
there are significant errors in the reconstructed data. Examination
of the error histogram (see Fig. 5b), shows that it is skewed to the
left. This is confirmed by a skewness value of -0.41 which indicates
that, in this case, the kriging method consistently under-estimated
the true output values. Kriging works in several stages, the first of
which is the estimation of an experimental semivariogram, which
describes the spatial autocorrelation of the data to be interpolated. A
model is then fitted to the semivariogram and used as a basis func-
tion for a global interpolation. Fig. 5c shows that the semivariogram
model failed to correctly fit the data. This failure caused the inter-
polation basis function to be inappropriately chosen, leading to the
erroneous output. This type of error distribution can occur when-
ever the semivariogram model does not fit the experimental semi-
variogram, or when the semivariogram sampling fails to correctly
capture the spatial-autocorrelation of the data. A failure at the model
fitting stage can also lead to a complete failure of the interpolation
process. Problems such as this are by no means specific to kriging,
although its complexity makes it more prone to the propagation of
errors through its multiple stages.

5. CONCLUSIONS

This study has demonstrated some useful ways in which MIM can
be characterised, by using SV where full correct fields are available

and CV where only scattered input data are available. An examina-
tion of artefacts inherent in interpolation methods has also been pre-
sented, along with specific illustrative examples demonstrating how,
and where these artefacts may appear. Finally, a discussion of inter-
polation error histograms, including how they can be analysed, and
the useful information that the first four standardised moments can
provide has been presented. These evaluation methodologies should
prove useful to geoscientists and engineers who use multivariate in-
terpolation methods in their work.

6. REFERENCES

[1] M. Chen, W. Shi, P. Xie, V. Silva, V. E. Kousky, R. W. Higgins,
and J. E. Janowiak, “Assessing objective techniques for gauge-
based analyses of global daily precipitation,” J. Geophys. Res,
vol. 113, 2008.

[2] M. P. Foster and A. N. Evans, “An evaluation of interpolation
techniques for reconstructing ionospheric TEC maps,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 46, no. 7,
pp. 2153–2164, 2008.

[3] K. Sugihara, A. Okabe, and B. Boots, “Spatial tessellations:
Concepts and applications of voronoi diagrams,” Probability
and Statistics, 2000.

[4] R. Sibson, “A brief description of natural neighbour interpola-
tion,” Interpreting Multivariate Data, pp. 21–36, 1981.

[5] J. C. Carr, W. R. Fright, and R. K. Beatson, “Surface interpo-
lation with radial basis functions for medical imaging,” IEEE
Trans. Med. Imag., vol. 16, pp. 96–107, 1997.

[6] D. T. Sandwell, “Biharmonic spline interpolation of GEOS-3
and SEASAT altimeter data,” Geophysical Research Letters,
vol. 14, no. 2, pp. 139–142, 1987.

[7] N. A. C. Cressie, Statistics for Spatial Data, John Wiley &
Sons, Inc., 1991.

[8] M. H. Trauth, MATLAB Recipes for Earth Sciences, Springer,
2006.

[9] T. Q. Pham and L. J. van Vliet, “Normalized averaging using
adaptive applicability functions with applications in image re-
construction from sparsely and randomly sampled data,” Image
Analysis, Proc., vol. 2749, pp. 485–492, 2003.


	 Introduction
	 Quantitative Evaluation Methodology
	 Simulation Validation
	 Cross-validation

	 Reconstruction Artefacts
	 Interpolation Error Distributions
	 Conclusions
	 References

