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Abstract

This report looks at the reconstruction of sparse remotely sensed data using a new technique
know as normalised convolution. Traditional reconstruction techniques are examined and all
are found to not perform well when faced with highly sparse data.

Normalised convolution and adaptive normalised convolution are introduced as alternatives to
these traditional techniques, and found to perform well on highly sparse data, suggesting their
suitability for the reconstruction of geophysical data sets.

An initial study using Global Positioning System derived measurements is presented, and nor-
malised convolution based techniques are found to perform better than standard interpolation
methods throughout the test. Optimum parameters are also derived, and relationships between
input data and these parameters are found to be too sensitive in their current form.

Finally, conclusions and further work are presented.
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1

Reconstruction of Geophysical Datasets

Remote sensing is the process of gathering information about an object or area from a distance

[1]. This could include satellite imagery, such as the examples listed below, but the definition

does not end there. There are a great many sources of remotely sensed data, encompassing

many different fields, methods of measurement, spatial and temporal resolutions and distribu-

tions.

Definition 1 (Image). For the purposes of this report, an image is a array with at least two

dimensions, where some or all of the elements contain intensity values representing some kind

of data. This includes traditional greyscale and colour images (which constitute two- and three-

dimensional arrays respectively), images of spectral content which is outside of human vision,

and data which does not represent electromagnetic radiation at all.

Types of remotely sensed imagery include [2]:

• Monospectral: images are composed of data from a singal spectral band, such as near

infrared.

• Multispectral: images are composed of data from several spectral bands, which are sensed

simultaneously. See figure 1.1, which shows a visible light image of Death Valley, US.

• Hyperspectral: images are composed of data from many vary narrow continuous spectral

bands, from visible wavelengths, through to far infrared. Hyperspectral imagery attempts

to give each data point a continuous spectrum of reflectance.

• Synthetic aperture radar: images are constructed using radar systems which make used

of array antennas to synthesise very large apertures, with narrow, steerable beams. This

increases the resolution far above that of systems using non-synthesised actual antennas.

See figure 1.2 which shows a SAR image of Oregon, US.
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6

Data could also have been gathered from spcific instruments, on-board satellites or probes, as

with the following examples:

• The Doppler Wind Experiment on Cassini-Huygens sensed the wind velocity of Titan’s

atmosphere during the probe’s descent, using instruments on both the Huygens probe

and the Cassini Orbiter. This information was then relayed back to Earth, for analsyis.

• The Halogen Occultation Experiment on the Upper Atmosphere Research Satellite makes

use of satellite solar occultation to measure solar attenuation. The attenuation profiles

are then processed to extract data on the composition of the atmospheric limb which was

measured.

Figure 1.1: Colour satellite image of Oregon, US. (Public domain image courtesy of NASA)

Remotely sensed data sets are often sparse because of the way in which they are collected.

For example, data from global positioning system (GPS) satellites are only available on specific

paths between the satellites and visible ground stations (see figure 1.3, which shows the posi-

tions of 20 GPS ground stations in North America). Alternatively they might have come from

ground based measurement stations which are spaced apparently randomly over a large area.

Data could also have come from floating transducers, dotted all over the Earth’s oceans, and

drifting with the wind and currents, like the ARGO floating sensors ([? ]). Figure 1.4, shows

the positions of the sensors as of September 21st, 2006. In situations where it is impractical

or prohibitively expensive to obtain blanket coverage, it is generally necessary to settle for a

sampled look at things, and this often leads to sparse data. For this reason, it is useful to have

as many techniques as possible ready to extract as much useful information as is available from

the data.

Definition 2 (Degree of Sparsity). According to Karvanen and Cichocki [3], a given data sets

degree of sparsity can be quantified1 using ℓ0 norm, which is defined for a vector x, by:

1for the noiseless case, where samples present are not to be considered noise, as opposed to the case where
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Figure 1.2: Synthetic aperture radar (SAR) image of Death Valley, US (Public domain image
courtesy of JPL)

||x||0 =
#{j, xj 6=0}

N
(1.1)

Where # increments a counter whenever its argument evaluates to true, and N is the number

of elements in the vector being measured. The degree of sparsity is therefore simply a fraction

which describes the number of non-zero elements in a given vector. However, this conveys no

information about the distribution of elements within the vector, and so in some cases, it may

be preferable to define data sparsity using statistical moments, such as kurtosis.

The degree of sparsity of a given set of data can also be a consequence of the way it is projected

into a form ready for reconstruction (discussed below). Quite often, data will consist of a set of

scatter points, with each element being defined at a specific point in space. Each point must be

projected into a matrix before any further processing can be done, where each matrix element

represents a tile of space, with vertices defined by a grid or spatial coordinates. The area of the

matrix elements, (and therefore the resolution of the grid) will determine the sparsity of the

resultant matrix, as demonstrated by figure 1.5. This contrived example shows a set of data

(the black circles) being projected first onto one grid, and then onto a second grid with double

the resolution. The grey areas show where each point would be placed in the output matrix.

1.1 Reconstruction Techniques

Often, in order to make use of sparse data, some form of processing must be carried out in order

to convert it into a full set of points. This process is known as reconstruction. Reconstruction

samples may be noisy
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Figure 1.3: 20 GPS Receivers in North America

(or interpolation) is the process of recovering data points which lie between a set of samples.

It can therefore be described as constructing a function which closely fits the data points, and

should therefore be a good approximation of the missing points. This can be approached in two

main ways: directly, and indirectly. Direct interpolation is discussed in the following section

and involves specifically aiming to find coefficients for a given interpolating function. Indirect

interpolation includes all techniques which are not direct, which can be broadly split into two

further categories, data-driven and model-driven.

Model driven reconstruction uses available data to seed or bias models, which are then used to

derive output values for the reconstruction. This kind of reconstruction has been used in many

fields, for example palaeoecology (see [4], where a temperature model and pollen measure-

ments were used to reconstruct treeline data), medical imaging (where intensities are mod-

elled to help improve scan outputs), computer vision (see, for example Derou et al. [5]) and

oceanography (see Guinehut et al. [6]) and other geophysical uses (for example GPS, see Man-

nucci et al. [7]).

The following section describes some common ‘traditional’ or direct interpolation techniques,

before moving on to describe a class of techniques known as Kriging, which were designed to

reconstruct geophysical data.
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Figure 1.4: ARGO Buoy positions

(a) Low resolution grid =⇒ low spar-
sity

(b) Higher resolution grid =⇒ higher
sparsity

Figure 1.5: Examples illustrating how grid resolution determines data sparsity

1.1.1 Direct Interpolation

Direct interpolation techniques work by attempting to find coefficients for a function, or set

of functions, such that the functions pass through all available data points. Direct in this case

simply means that the process attempts to find coefficients for the functions being used to

interpolate the data set. Indirect techniques use other methods to find and parameterise the

functions being fitted to the data. All of the techniques detailed below require data that sits on

a regular grid.

Bilinear Interpolation

Bilinear interpolation is the extension of linear interpolation 2 into two dimensions. It works by

performing linear interpolation in one dimension, and then repeating the process in the other.

2Linear interpolation joins (1D) sample points using straight lines.
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Figure 1.6: Bilinear Interpolation Layout
Bilinear Interpolation Layout. Point P is to be estimated, and Qij are available input samples.
(Public domain image, courtesy of Jitse Niesen)

If the known samples sit on a square grid, with vertices labelled as shown in figure 1.6, then

bilinear interpolation can be described by the following polynomial:

f(x, y)≈a1 + a2x+ a3y + a4xy (1.2)

Where the coefficients (ai) are found using:

a1 = Q11

a2 = Q21 −Q11

a3 = Q12 −Q11

a4 = Q11 −Q21 −Q12 −Q22

(1.3)

Linear interpolation is unsuitable for situations where a good representation of high rates of

change is necessary, because there is no guarantee of continuity at the edges of the grid.

Bicubic Interpolation

The polynomial basis for bicubic interpolation has 16 terms and takes the following form:

f(x, y) = a00 + a10x+ a01y + a20x
2+

a11xy + a02y
2 + a21x

2y + a12xy
2+

a22x
2y2 + a30x

3 + a03y
3 + a31x

3y+

a13xy
3 + a32x

3y2 + a23x
2y3 + a33x

3y3

(1.4)

Or more simply:
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f(x, y) =

3
∑

i=0

3
∑

j=0

aijx
iyj (1.5)

The coefficients can be derived in a variety of ways, however the normal approach uses values

at available grid vertices as well as their derivatives and cross derivatives.

When used on a grid, bicubic interpolation is the lowest order interpolation which maintains

continuity of the function and its first derivatives across boundaries. When data are highly

sparse, problems occur, because of the large number of coefficients which are needed to gener-

ate the derivatives.

Spline Interpolation

Spline interpolation is a scheme which uses low-order piecewise polynomials, defined between

points known as knots or control points. The name spline comes from the drafting tool of

the same name; a flexible strip designed to allow curves to be drawn which maintain good

continuity with adjacent curves. Splines my be described as uniform if control points are equally

spaced, or nonuniform if not. When using spines for interpolation, the data points are used as

the control points, which means that many of the different types of spline cannot be used -

splines which pass through their control splines are called interpolating splines and include

linear, quadratic, cubic and natural cubic splines (a parametric representation of the physical

spline curve mentioned above).

The main advantage of spline interpolation is that it gives results which are free from Runge’s

phenomenon. Runge’s phenomenon is a problem which occurs when interpolating with high-

order polynomials, and manifests itself as oscillations at the edges of the interpolation interval.

A good introduction to splines can be found in [8, pp. 486–500].
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1.1.2 Gridding

Most interpolation schemes require data points to be defined on a regular grid. For this reason

it is necessary to adapt and extend traditional interpolation techniques for use when this is not

the case The main technique used for interpolating non-uniformly spaced vectors is known as

triangular or Barycentric interpolation. As the name suggests, triangular interpolation involves

triangulating the data using a Delaunay triangulation, and then performing the reconstruction

using the triangle’s vertices. Before explaining how Barycentric interpolation works, some

definitions are necessary:

Definition 3 (Delaunay Triangulation). The Delaunay triangulation of a set of 2D points

is a set of tessellated triangles, with points at the corners, such that no point is inside the

circumference of any triangle in the output. The circumference of a triangle refers to the

circumference of the circle which is defined by the triangle’s vertices - known as the circumcircle.

The geometric dual of the Delaunay Triangulation is known as the Veronoi Tessellation.

The Veronoi tessellation of a set of points divides the space containing the points into tessellating

convex hulls, each containing one point. The space within each hull is closer to the point

contained within it, than any other, except for at the hull edges, where the distance to two

points could be equal.

(a) Delaunay Triangulation (b) Veronoi Tessellation

Figure 1.7: The Delaunay Triangulation and Veronoi Tessellation for a random set of points.

Definition 4 (Simplex and Convex Hull). An n-dimensional simplex is the convex hull of a

set of (n+1) points. The convex hull of a set of points is the smallest convex polygon for which

each of the points lies either inside the polygon or on its boundary. For the two-dimensional

case (a 2-simplex) the hull has three points, and is therefore a triangle.

The name Barycentric interpolation comes from Barycentric coordinates – homogeneous coor-

dinates which are defined by the vertices of an enclosing simplex. Most software uses the free

Qhull library (http://www.qhull.org/) for the above operations.

Once the data have been triangulated, the following procedure is carried out for each point

http://www.qhull.org/
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which requires an estimate:

1. Extend a line from the point to the edges of the surrounding simplex. This can be done

in any direction, as long as it is consistent throughout the entire process.

2. Calculate values at the points where the line crosses the edges of the simplex. This is

done by interpolating using the vertices of the simplex.

3. Interpolate using the points calculated in step 2, to obtain a value at the desired point.

The interpolation used could be linear, cubic or some other direct interpolation technique. How-

ever, this technique only works when the Delaunay triangulation is successful, which means that

at high sparsities it tends to fail – regardless of the complexity of the interpolation.
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1.1.3 Kriging

Kriging is a technique which was developed in the 1960s by D. G. Krige, a South African mining

engineer, for use in estimating ore reserves in mines and quarries from sparse measurements. It

assumes that the parameter being estimated has a certain degree of spatial correlation, which

is dependent only on relative proximity.

Kriging techniques have been sucessfully applied to a number of scenarios (for example, min-

ing, mathematics and classification by Boucher et al. [9]), as discussed by Cressie [10]. Kriging

was first applied to ionospheric electron density mapping by Blanch et al. [11], [12]. Later,

Wielgosz et al. [13] compared Kriging with a multi-quadratic spline modelling method, and

found that they were very similar in performance.

Kriging is a form of Bayesian inference, which starts by assuming a Gaussian a priori distribution

for the input data. This is then combined with a Gaussian likelihood function for each of the

samples. This combination leads to an a posteriori distribution whose mean and variance can

be calculated using Bayes’ theorem, and which should have a smaller variance than the prior

distribution [14, pp. 300–333].

One very important concept in Kriging is the semi-variogram, which is defined as follows, for a

one-dimensional series (see Cressie [15, page 58]):

Definition 5 (Semi-Variogram).

V (k) =
1

2
V ar [xt+k − xt] (1.6)

Where x is the data series, and k is the lag. The semi-variogram can be constructed for as

many lags as the data allows. For stationary processes, this is related to the auto-correlation

and variance by:

V (k) = γ(0) [1 − ρ(k)]] (1.7)

Where γ(0) is the variance of the process. The semi-variogram is therefore a tool for assessing

the spatial autocorrelation of a given function [16, pp. 273].

Creating two dimensional semi-variograms is more complicated, as the lag becomes a vector.

This means it is necessary to group similar lag vectors together, to avoid too many data points.

There are several different Kriging methods, the most prevalent being ordinary Kriging, which

is described below.

Ordinary Kriging
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1. Construct a semi-variogram from input data set.

This is a plot of Euclidean distance between each point, against the variance of each

sample relative to the others.

2. Construct a model semi-variogram.

This should model the trend in the input semi-variogram – and is constructed from prior

knowledge.

3. The model semi-variogram is then used to compute Kriging Weights.

These are then used in a weighted sum to compute output values:

F (x, y) =
N
∑

i=1

wiQi (1.8)

Where N is the number of input samples in the set, Qij is the ith scatter point, and wi is

the ith weight. Weights are calculated using a set of simultaneous equations, which are

designed to minimise the least square error between the model and data.

Kriging is considered a model-based reconstruction technique, because it requires a model

semi-variogram for the reconstruction.
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1.2 Conclusions

This chapter has discussed the origins and meaning of sparse remotely sensed data, and has

introduced the problem of reconstruction. It then described several direct reconstruction tech-

niques. Unfortunately, when the data to be reconstructed are very sparse (where over ap-

proximately 95% of data points are missing), these techniques are unable to provide realistic

outputs. This is for two main reasons:

• Not enough data are available to create a useful triangulation. This means that all

Barycentric techniques, regardless of their interpolation method, will fail.

• Not enough data are available to form enough derivatives of the data to ensure continuity

between reconstruction cells.

For this reason, it is necessary to look at alternative reconstruction techniques which can cope

with highly sparse data. Kriging is one technique which might be appropriate, however, its

reliance on a model semi-variogram means that it is unable to cope with data sets with unknown

spatial autocovariance.

Normalised convolution requires no such prior information, and therefore has great potential

for the reconstruction of un-modelled data. Chapter 2 discussed normalised convolution, start-

ing with the first principles, and moving on to describe ways in which it can be improved to

make use of information locked within the data set. This chapter will show that normalised

convolution, and derived techniques are suitable for reconstructing sparse remotely sensed

data.

Chapter 3 is concerned with the application of normalised convolution to GPS electron content

mapping. First, GPS and the ionosphere are briefly described, giving the motivation for the re-

construction process. The process of converting GPS data into a form suitable for reconstruction

is then discussed, and some example outputs are given.

Chapter 4 attempts to evaluate the performance of normalised convolution. This chapter dis-

cusses the generation of test data, before examining normalised convolution with a view to

characterising how it reacts to changes in input conditions. Next, a scenario comparison is car-

ried out – this attempts to find the optimum parameters for a given input. From these results,

fits are derived, which reveal that more work on characterising the input distribution is needed.

Chapter 5 gathers the conclusions from the previous chapters, and explains further work that

could be carried out, starting with implementation based tasks, such improving understanding

of input characteristics and their effect on normalised convolution and further developments

to adaptive schemes. The second section details new applications for normalised convolution

based reconstruction, with specific reference to highly sparse GPS data, and temperature and

salinity data taken by the ARGO float network.
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Normalised Convolution

Normalised convolution (NC) techniques are interpolation algorithms which make use of avail-

able data and confidence (or certainty) meta-data – data which describes where samples are

available, and where they are absent. This distinction allows algorithms to distinguish between

absent data, and zero valued data, which helps improve algorithm output.

NC techniques were originally proposed in 1993, by Knutsson and Westin [17]. It has been

steadily increasing in popularity, and has been applied to medical imaging, see, for example

Estepar et al. [18], regularisation of tensor fields [19] and motion compensation [20]. NC

techniques are particularly interesting with regards to reconstructing geophysical data because

they have not yet been applied to this area.

The algorithm behind normalised convolution is very simple, involving just two convolutions

and an element-wise division.

The first convolution is defined by:

D(x, y) = f(x, y) ∗ g(x, y) (2.1)

Where f(x, y) is the sampled input data. g(x, y) is known as the applicability function, (also

known as mask or filter), and defines the locaisation of the convolution by constraining the

area over which it works. Generally, Gaussian funtions are used as masks, although Knutsson

and Westin [17] used a modified raised cosine.

The second convolution is defined by:

N(x, y) = c(x, y) ∗ g(x, y) (2.2)

17



2.1. SAMPLE OUTPUT 18

Where c(x, y) is the certainty map associated with the data f(x, y). Equation 2.2 outputs a set

of certainties associated with the first convolution.

In order to normalise the first convolution, it is simply divided by the second:

f̃(x, y) =
D(x, y)

N(x, y)
(2.3)

The output is therefore the first convolution, weighted by the confidence of the results gener-

ated.

Normalised convolution has the advantage that it works at very high sparsities, provided the

filter used is large enough. It is also both computationally, and intuitively very simple, and

requires no triangulation or calculation of derivatives.

2.1 Sample Output

Figure 2.1(d) shows standard normalised convolution on the irregularly sampled test image

Lenna.

(a) Lenna (b) Lenna: 90% of samples removed

(c) Lenna: After first convolution (sam-
pled image with filter)

(d) Lenna: Reconstructed using NC, af-
ter having 90% of samples removed. The
NC filter was a Gaussian of size 11.

Figure 2.1: Images of Lenna, before, sampled and after NC
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2.2 Filter Considerations

In general, the filter size should be kept as low as possible, in order to avoid over-smoothing

the output data. Using a larger filter than necessary will causes the output to be to include

values from a larger part of the surrounding area, which will lead to lower sensitivity to closer

points.

However, if the image to be reconstructed has gaps which are larger than the size of the filter

being used in the NC, the output will have gaps. These gaps reduce the quality of the output

image, and can produce edge artifacts.

To mitigate the problems that this causes, the filter size at each point can be adapted, in re-

lation to the distance to the nearest sample. This leads to the concept of adaptive normalised

convolution which is discussed in section 2.3.

2.3 Adaptive Normalised Convolution (ANC)

Adaptive normalised convolution aims to increase output quality by adapting to the input data,

by choosing the smallest possible filter which encompasses at least one data point. This will

ensure that the output image has no gaps, and should increase the quality of the output. This

can be done by using a Euclidean Distance Transform to calculate the distance to the nearest

input sample in the confidence map.

Definition 6 (Euclidean Distance). The Euclidean distance [21] between two objects is the

distance one would obtain through standard measurement.

ℓ2(x, y) =

(

N
∑

i=1

|xi − yi|2
)

1

2

(2.4)

Equation 2.4 is also known as the ℓ2 norm, or Minkowski distance of order 2. Other difference

transforms are formed by raising the components to different powers, before rooting them by

the same power:

ℓp(x, y) =

(

N
∑

i=1

|xi − yi|p
)

1

p

(2.5)

Commonly used distance metrics are the ℓ1 norm, known as Manhatten distance, and ℓ∞, the

chessboard (or Chebyshev) distance, which is defined by:

ℓ∞ = max (|x1 − y1|, |x2 − y2|, . . . , |xN − yN |) (2.6)
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The chessboard distance corresponds to the distance a chess king would have to travel to reach

a given position on a chessboard.

However, things are not quite as straight forward as one would hope, and using only size

adaptation has been offers very little improvement to the output image peak signal to noise

ratio (PSNR) over simply choosing a large-enough filter, and using that over the entire input

image. Tests using a ℓ2 distance transform gave rise to a difference in PSNR of less than 1,

when compared to standard normalised convolution using filters of a fixed size.

Figure 2.2: Lenna: Reconstructed using shape adaptive NC.

In order to give a higher level of improvement over standard NC, an adaptive NC system must

make use of information on the structure of the actual samples as well as their spacing.

Adaptive NC (ANC) was first suggested by Pham and van Vliet [22], and improves on shape

adaptive normalised convolution by using information derived from local gradients. This sec-

tion of the report follows the development of an ANC filter after Pham and van Vliet [22].

First, techniques for estimating the gradients of the input image must first be introduced, for

this reason, the next section introduces two gradient estimation techniques, and is followed by

a return to the topic of ANC.
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2.4 Gradient Calculation in Irregularly Sampled Images

2.4.1 Introduction

The two techniques introduced in this section provide ways of estimating the gradient of an

image where some data are missing. They were first introduced by Knutsson and Westin [17],

but are probably best summed up in [23], where various examples and comparisons with Sobel

operators are given.

2.4.2 Derivative of Normalised Convolution (DoNC)

Applying differential operators to the normalised convolution (equation 2.2) is one way of

obtaining an estimate of the image gradient. It also happens to be fairly computationally simple.

Applying the differential operator to only the x axis gives:

∆x

(

D(x, y)

N(x, y)

)

≡Dx(x, y)×N(x, y) −Nx(x, y)×D(x, y)

N2(x, y)
(2.7)

where:

Dx(x, y) = x.g(x, y) ∗ f(x, y), (2.8)

and:

Nx(x, y) = x.g(x, y) ∗ c(x, y). (2.9)

In the above equations, x.g(x, y), is an edge enhancement filter which could be any arbitrary

filter multiplied by a variable x. This effectively tilts the filter relative to the x axis. The example

given by Piroddi and Petrou [23] is a raised cosine of the form (see figure 2.3):

g = cosα

(

π
√

x2 + y2

8

)

, (2.10)

Where α is the power by which is cosine is raised, and therefore controls the width of the

central peak of the function.

This can then be extended to the y axis in a similar fashion, to give outputs consisting of the

gradients in x and y, (∆x and ∆y) in a similar fashion to the outputs of a Sobel edge detector.

2.4.3 Normalised Differential Convolution

Normalised differential convolution (NDC) is slightly more complex than DoNC, and works by

constructing a set of filter matrices, (one for each point in the sampled image) which are then
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Figure 2.3: Raised cosine filter (α = 1)

inverted, and used as a multiplier on the data. This gives good results, but is computationally

more expensive than DoNC, because of the need to construct and invert a separate matrix for

each point.

The matrix, N∆ is given by:

N∆≡
[

Nxx Nxy

Nyx Nyy

]

(2.11)

The terms in equation 2.11 are defined by the following equations (dependence on x and y

is implicit), which define the data certainty in x, y, and the diagonals (xy and yx). N∆ is

therefore based entirely on the data confidence map.

Nxx≡N×((x2.g) ∗ c) −N2
x (2.12)

Nyy≡N×((y2.g) ∗ c) −N2
y (2.13)

Nxy≡Nyx≡((x.y.g) ∗ c) −Nx×Ny (2.14)

The other term in the NDC is a vector, formed using the input data and differentiated in x and

y.

D∆ =

[

Dx×N −Nx×D
Dy×N −Ny×D

]

(2.15)

The output for each pixel is then defined as:

[

∆x

∆y

]

= N−1
∆ D∆ (2.16)
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As with DoNC, the filters g could take any form, provided that when multiplied by combinations

of the variables x and y, they form directionally sensitive filters. Smaller filters give more

localised edges, but the minimum filter size is dependent on distance between adjacent samples.

2.4.4 Sample Outputs

Figures 2.4 and 2.5 show DoNC and NDC edge magnitudes generated from an the Lenna image

where 90% of data have been removed. Both functions use an identical 13×13 Gaussian mask.

The output images are of a broadly similar quality, with the NDC having generally smoother

output.

Figure 2.4: DoNC (90% data removal, Gaussian filter dimension 13)

Figure 2.5: NDC (90% data removal, Gaussian filter dimension 13)
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2.5 Adaptive Normalised Convolution Revisited

Adaptive NC works by making use of information on the underlying structure of the input

image. This information, such as gradient and direction of local features allows a filter kernel

to be sized and oriented to give the best possible output image quality. Having explained how

it is possible to estimate the gradient of an irregularly sampled image, the process of ANC can

be examined in detail.

First, the gradient of the input image should be estimated. This can be determined using either

NDC or DoNC, with DoNC offering results of comparable quality at a lower computational cost

(see tables 2.2).

Next, the gradients are multiplied together and smoothed using a Gaussian filter (where larger

filter sizes are generally better) to give g2
x, g2

y and gxy.

All filters in ANC are usually (2D) Gaussian, which makes it easy to set the size in two dimen-

sions by adjusting standard deviation values, and using the formula d = 6σ + 1.

After these new gradients have been computed, a gradient scale tensor (GST) is produced for

each pixel in the image. (See [24] for more information on GSTs and their derivation). This is

a two-by-two matrix, composed of pre-smoothed gradient products:

GST =

(

g2
x gxy

gxy g2
y

)

(2.17)

The GST’s eigenvalues are then computed, and from these two values the following metrics can

be calculated: (λ1 and λ2 are the largest and smallest eigenvalues respectively.)

• The local anisotropy:

A = 1 − λ1

λ2
(2.18)

• The local energy:

E = λ1 + λ2

Definition 7 (Eigenvalue). The eigenvalues of a square matrix are the non-trivial roots of its

characteristic equation. The characteristic equation is a representation of the matrix in one

variable, normally λ. The characteristic equation of a matrix, A is

det (A − λI) = 0 (2.19)

Therefore, the eigenvalues are found by solving equation 2.19.

The eigenvalues and gradients also allow computation of the local gradient direction and ori-

entation. The values lie in the range ±π
2 , and are given with respect to the x-axis.
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• The local gradient direction is the direction associated with the largest eigenvalue:

ϕ1 = tan−1

(

λ1 − g2
x

gxy

)

(2.20)

• The local orientation is the direction associated with the smallest eigenvalue (this value

is used to set the filter direction, see 2.6):

ϕ2 = tan−1

(

gxy
λ1 − g2

y

)

(2.21)

Figure 2.6: Steered Edge Enhancement Filter

As discussed in section 2.3 the other variable used in determining the filter size at each pixel is

the Euclidean distance from each pixel to its nearest neighbour. This is known as σa.

The filter standard deviations are then given by:

σu = C(1 −A)ασa (2.22)

σv = C(1 +A)ασa (2.23)

The constants C and α allow the degree of dependence on the local image structure and

anisotropy to be adjusted. Values of C = 1, and α = 1.1 give good results.

After the filter size and orientation for each pixel has been calculated, the standard normalised

convolution procedure can be followed, where instead of using a fixed Gaussian filter, the filter

for each point is constructed using the calculated data. This means that standard convolution

routines must be modified in order to use different filters at each point.

The entire process can be seen in Figure 2.7, which shows how many different features of

the filter may be customised, including optimal smoothing filters at each stage - in practice

however, smoothing anything but the anisotropy and gradient products actually reduces the

output quality.

Experimentation on changing filter sizes suggests that for the gradient products, a larger filter

size is better, where as initial results show that a more moderate filter size seems to be best for
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smoothing the anisotropy.
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Figure 2.7: Flow chart showing NDC process.

2.6 Preliminary Performance Evaluation

This section shows outputs generated by normalised convolution and adaptive normalised con-

volution alongside results generated using MATLAB’s griddata function, which facilitates inter-

polation of data using various direct methods. These results all use the test image ‘Lenna’ as

their basis, and form a basic, preliminary technology evaluation.

This test was carried out by taking the test image, and randomly removing approximately 90%,

95% and 99%. Choosing the sample to remove followed the following proceedure, where

threshold is the decimal value of the percentage of samples to remove:

For each pixel in the (intact) input image. {

Draw a value from a uniform random distribution.
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if value < threshold

set pixel to 0

}

This then allows various performance metrics to be calculated by comparing the output of

and process with the original image. The two main performance metrics, (also called fidelity

criteria) used in this report are peak signal to noise ratio (PSNR) and root mean square error

(RMSE):

Definition 8. RMS Error and PSNR The RMS error between an original image f(x, y), and

a reconstructed estimate f(x, y) is given by [25]:

RMSE =

[

1

MN

M
∑

x

N
∑

y

[

f(x, y) − f(x, y)
]2

]

1

2

(2.24)

Therefore a low RMS error implies that f(x, y) is a good likeness to f(x, y).

The PSNR is defined as:

PSNR = 20 log10

Max allowed value

RMSE
(2.25)

Generally, the maximum value used in the denominator of equation will be 255, since most

images are represented by 8-bit pixels.

Figure 2.6 clearly shows that the ANC method has a slightly lower quality output at low spar-

sities than the interpolation methods, but that the relative quality increases as more data are

taken out. In figure 2.9(d) the difference in quality between ANC and the interpolation schemes

is particularly apparent.

In figures 2.9(a)-2.9(d) the ‘adaptive’ output gradients were generated using DoNC, and are

very similar to the NDC outputs (not shown). The difference between DoNC and NDC is dis-

cussed in section 2.4.

RMSE Linear Cubic Nearest NC ANC (DoNC) ANC (NDC)
90% 15.42 15.41 18.41 17.51 15.59 15.47
95% 19.59 19.69 22.20 22.68 18.81 18.73
98% 25.43 25.79 28.14 49.40 23.49 23.80
99% 31.92 32.33 32.05 79.79 27.57 27.20

Table 2.1: RMSE values for 90-99% data removal.

PSNR Linear Cubic Nearest NC ANC (DoNC) ANC (NDC)
90% 24.370 24.375 22.830 23.265 24.275 24.340
95% 22.290 22.245 21.205 21.020 22.645 22.680
98% 20.025 19.900 19.145 14.255 20.715 20.600
99% 18.050 17.940 18.015 10.090 19.320 19.440

Table 2.2: PSNR values for 90-99% data removal.
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Figure 2.8: RMSE values for ANC and Linear interpolation with varying data removal.

2.6.1 Implementation Enhancements

Initially, a pure MATLAB based implementation was used. However, due to the high complexity

of ANC, this was far too slow for regular running, with run time on small images (e.g. 320×240)

approaching 10 minutes.

Profiling the code1, revealed several areas which needed work to increase their efficiency, in-

cluding:

• Generation of Gaussian filters: generating large Gaussian filters using a näıve imple-

mentation of the mathematics (that is, creating a mesh, and calculating a 2D Gaussian

function over its entirety) is much slower than separating the filter into two 1D kernels,

and convolving them:

g(u, v;σu, σv) =
1√

2πσu
exp

{

−1

2

u2

σ2
u

}

∗ 1√
2πσv

exp

{

−1

2

v2

σ2
v

}

(2.26)

• 2D Convolution using large isotropic filters: convolving using large 2D filters has a com-

plexity of O(n2). If the filters are Gaussian, then they can be separated into two 1D filters

once separated, the image can be filtered in two stages, by first using one of the 1D fil-

1A profiler is a tool for showing the time taken at each point in a program
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(a) 90% data removal (b) 95% data removal

(c) 98% data removal (d) 99% data removal

Figure 2.9: Comparison of Matlab data gridding and ANC.

ters, and then filtering the resultant image with the second filter. This reducing filtering

complexity to O(2n) multiplications. For information on algorithmic complexity, and the

O-notation, see Knuth [26, page 107].

Separability of filters is very useful, and it often possible to decompose 2D filter kernels

into two 1D kernels using the following algorithm:

– Perform the singular value decomposition (SVD) on the filter kernel This will give

three values U (output basis vectors), S (singular values) and V (input basis vec-

tors), which can be recombined to form the original kernel using the equation

U.S.V ∗ where ∗ represents the conjugate matrix transpose.

– Take the rank of the diagonal values of S. If the rank = 1, the filter kernel is

separable.
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– If the kernel is separable, the two 1D vectors can be formed by taking the first

columns of U and V and multiplying them by the square root of the single non-

zero value from S.

• Anisotropic filtering: creating 2D filters and then rotating them using a reverse affine

transform (see, for example Foley et al. [8, page 207]) is the most straight forward way

of creating anisotropic filters. The affine transform works in reverse because values are

needed at integer pixel coordinates. This is very slow when it needs to be repeated

multiple times. Thankfully, the separability property of Gaussian filters can also be used to

increase the speed of anisotropic filtering operations, as detailed in [27]. The procedure

involves filtering first in one fixed direction, parallel to the x-axis, using:

gx(x, y) = w0f(x, y) +

⌊N/2⌋
∑

i=1

wi(f(x− i, y) + f(x+ i, y)) (2.27)

Where N is the size of the Gaussian filter, whose weights are given by w0 . . . wN . The

filter used for the first filter pass has the standard deviation:

σx =
σuσv

√

σ2
u cos2 θσ2

v sin2 θ
(2.28)

Where θ represents the angle of rotation of the filter, and σu and σv represent the original

perpendicular standard deviations of the anisotropic filter.

The second pass of the filter operates on the output of the first, with the following stan-

dard deviation:

σψ =
1

sinψ

√

σ2
u cos2 θσ2

v sin2 θ (2.29)

The term ψ in this equation is found by using:

µ = tanψ =
σ2
u cos2 θσ2

v sin2 θ

(σ2
u − σ2

v) cos θ sin θ
(2.30)

This is left as a tangent, because µ is used at the intercept of the line along which the

second filter operation works:
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gθ(x, y) = w0gx(x, y) +

⌊M/2⌋
∑

j=1

wj{a(gx(⌊x− j/µ⌋, y − j)

+gx(⌊x+ j/µ⌋, y + j))

+(1 − a)(gx(⌊x− j/µ⌋ − 1, y − j)

+gx(⌊x+ j/µ⌋ + 1, y + j))}

(2.31)

The second filter operation therefore operates along a line oriented at φ radians to the

x-axis. However, because x± j/µ will not always lie on a pixel coordinate, (2.31) makes

use of linear interpolation between the pixels either side of the coordinate needed. The

overall complexity depends on the filter size but is O(2n) as for other separated filters.

A implementation in the C programming language, using the MATLAB external interface

significantly reduced the time taken in anisotropic filtering.

Implementing these improvements increased the speed of ANC filter by approximately 20 times,

reducing average sample run times from 497 seconds to 24 seconds.

2.7 Conclusions

This chapter introduced normalised convolution as an alternative to direct interpolation tech-

niques. It then moved on to improvements that can be made in order to improve the quality

of the NC output. To facilitate this, methods for finding edges in sparsely sampled image were

introduced, and these methods were then used to explain how an adaptive normalised convo-

lution algorithm could work.

This chapter has shown that NC and ANC are capable of reconstructing data at high sparsi-

ties with higher quality than direct techniques. Various ways of enhancing performance were

discussed, including separating filters, and a fast implementation of anisotropic filtering, these

allow ANC to run at very high speeds, only slightly slower than plain NC.

This speed enhancement, coupled with the good output quality at high sparsities suggest that

NC and ANC would be good techniques to apply to highly sparse geophysical data sets, such as

global positioning satellite (GPS) data for mapping electron content. The following chapter dis-

cusses how the ionosphere’s electron content can be measured using sparse GPS receivers, and

how these sparse measurements can be reconstructed using NC into electron content maps.
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Application to Ionospheric Electron Content Mapping

Data derived from measurements taken using global positioning system (GPS) receivers can be

used for far more than just navigation and positionging. One very important use of GPS data

is the mapping and profiling of the ionosphere, a region of the atmosphere which is heavily

influenced and altered by Solar activity. Ionospheric delays are the main source of ranging

error in GPS, so understanding how these delays change under varying ionospheric conditions

is important consideration in improving the GPS accuracy. The state of the ionosphere also has

wide ranging consequences for long range radio communications and power distribution. For

these reasons, and more, it is useful to be able to map the ionosphere using whatever data are

available. This chapter introduces the ionosphere, GPS and then shows how GPS data can be

converted into a form suitable for reconstructing with normalised convolution.

3.1 The Ionosphere

The ionosphere is a region of the atmosphere, spanning from about 90 to over 1000 km, which

is formed when extreme ultra violet (EUV) light photoionises neutral atoms in the atmosphere.

This process creates positive ions and electrons from neutral atoms and can only occur in sun-

light.

Photoionisation is counteracted by two main processes:

• Recombination, involves electrons recombining with ions to form neutral atoms once

again. There are two forms of recombination (radiative and dissociative).

Radiative recombination is most common, and occurs when an electron and an ion re-

combine directly.

32
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Dissociative recombination involves a more efficient, two stage, process. In the first

stage, positive ions interact with various neutral molecules replacing one of the atoms

in the molecule, and in the second stage, electrons combine with the positively charged

molecule created previously.

The main parameter controlling the rate of recombination at any given altitude, is the

number of available neutral atoms.

• Attachment occurs at lower altitudes where there are more neutral atoms, and involves

electrons combining with neutral atoms to form negative ions.

Because of the way neutral atoms are distributed, the fact that their densities decrease with

altitude, and differences in intensity of EUV wavelengths, the electron density of the ionosphere

changes with altitude. The change of electron density with height is known as an electron

density profile. The electron density profile contains several distinct layers, known as D, E, F1

and F2, in increasing altitude. During the day, all four layers are present, because of high levels

of photoionisation, at night though, the recombination dominates, and the D, E and F1 layers

are almost entirely depleted, leaving only the F2 layer, which survives over night.
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Figure 3.1: Day and night example electron density profiles, generated using IRI2001.

3.1.1 Ionospheric Storms

Much of the behaviour of the ionosphere is governed by how the Earth’s magnetosphere and

the interplanetary magnetic field (IMF) interact and connect.

The Earth’s magnetosphere is a region of the atmosphere, starting at the top of the ionosphere

which contains a mix of ions and electrons, held in place by the Earth’s goemagnetic field, and

the solar wind. It consists of a long tail, about 70,000 km long, facing away from the Sun, which

is swept out by the solar wind. The edge of the magnetosphere is known as the magnetopause,
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outside of which is an area known as the magnetosheath, which is bounded by the bow shock, a

region where the solar wind velocity drops suddenly see figure 3.2.

Figure 3.2: The Magnetosphere
A simplified schematic of the magnetosphere. Public domain image courtesy of USGS.

The interplanetary magnetic field is formed by the steady outflow of solar wind from the Sun,

which carries the Sun’s magnetic field far from its surface. The Sun’s rotation causes the IMF

to be spiral shaped, and intense variation in the Sun’s surface magnetic field due to sunspots

means that the orientation of the IMF when it reaches the magnetosphere varies with time. The

‘vertical’ component of the IMF is known as Bz, and its orientation determines whether or not

solar wind plasma can enter the ionosphere. When Bz is pointing north or south, a large num-

ber of solar particles are injected into the ionosphere through regions of the geomagnetic field

know as polar cusps, resulting in increased geomagnetic activity. The polar cusps are regions

which form between the sunward and tailward magnetic fields, and consist of open magnetic

field lines. In the northern polar cusp, the magnetic field is directed towards Earth, and in the

southern cusp, the magnetic field lines point away. For this reason, when the orientation of the

IMF is southward, it is able to link with the Earth’s field, and this solar wind plasma is accel-

erated into the upper ionosphere. When southward Bz coincides with the Sun ejecting very

large numbers of particles, due to a solar flare, or coronal mass ejection (CME) a geomagnetic

storm can result. Geomagnetic storms can cause large aurora and disrupt power distribution

and communications.

The fact that the state of the ionosphere has such a large effect on communications and con-

ditions on Earth means that it useful to study it in as much detail as possible, over as large a

timescale as possible. There are various methods of remotely sensing the ionosphere’s electron

concentration, including:

• Ionosondes: which use swept high frequency pulses, and analysing the return signal.

• GPS Receivers and Satellites: see section 3.2

• Satellite Occultation: by mounting GPS receivers on GPS satellites, it is possible to recover

electron densities along limbs between the receiver and other GPS satellites, as they are

occluded by the Earth.
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The next section introduces GPS and discusses extraction of electron concentration data from

signal received at GPS ground stations. It then discusses how these signals can be reconstructed

into a full-image form.

3.2 GPS

GPS (Global Positioning System) is a timing and positioning system run by the US Department

of Defence. The GPS system is divided into three segments, known as the control, space and

user segments. The control segment consists of various tracking stations around the world,

with the main control centre at Schriever Air Force Base, Colorado, USA. These stations com-

bine measured satellite position data with models in order to precisely compute their positions

(ephemeris), and necessary clock corrections. These data are then uploaded to the satellites,

for inclusion in navigational signals (NS), which are sent to receiver units.

The space segment consists of (at least) 24 satellites configured such that there are four satel-

lites in six orbital planes, each inclined at 55° to the equatorial plane.

Each of the 24 satellites transmits their own NS, containing information on the satellite, clock

corrections, ephemeris and other information. The NS consists of 25, 1500 bit frames, delivered

over 12.5 minutes, corresponding to a data rate of 50 bits/s. This signal is created, and then

added (modulo two) to a 1.023MHz, pseudorandom-noise (PRN) code known as the coarse

acquisition (C/A) code. The resulting code is modulated on to 1575.42 MHz carrier, known as

L1, creating a spread-spectrum signal which can be used for ranging. A second spread spectrum

signal is transmitted at 1227.60 Mhz, and is known as L2. These frequencies are generated by

multiplying the fundamental GPS frequency (10.23 MHz) by 154 and 120 respectively.

Both L1 and L2 are modulated by a code known as the precision- (P-) code, which is encrypted

by a further code called the Y-code. A cryptographic key is required to remove the Y-code, and

allow use of the P-code. Many modern receivers make use of L2 code without decrypting the

P-code to improve ranging performance (see below).

The user segment consists of GPS receivers and their associated operators, or users. GPS

receivers require signals from four satellites in order to compute position in three-dimensions,

and time.

The receiver creates a replica C/A code which it correlates with the received signal in order to

find the correct time shift for the receivers clock. The receiver clock offset is known as the time

of arrival (TOA), or the pseudorange. Once the correct offset is known, the received signal can

be despread, and the NS demodulated.
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3.3 GPS Positioning

By combining the ephemeris data from a given satellite with the pseudorange derived from the

C/A, the receiver can fix its position to the surface of a sphere surrounding the satellite. By

combining four such measurements, it is possible to fix the position to one unique point - the

intersection of the four spheres.

During this process, the receiver’s local clock must be continually adjusted, as clock skew can

severely bias position measurements. This is done by examining the imaginary sphere inter-

sections for systematic bias, and altering the clock according to the bias distance. Successive

measurements from many satellites can reduce the clock error to negligible amounts.

3.3.1 Error Sources

Sources of ranging error (in approximate order of magnitude):

• Ionosphere – The ionosphere causes a frequency dependent delay in propagation of L-

band signals. This delay varies according to electron concentration along the ray-path,

and is typically at a minimum when the satellite is directly overhead. Current GPS hand-

sets are able to reduce ionospheric errors to approximately 10 metres, using models to

estimate range corrections, which (assuming a maximum total electron content of 1018

e/m), could be as high as 26 metres for the L2 band, and 16 metres for L1 [28, pp. 294–

307]. However this is still the main cause of ranging error in GPS. Because the delay is

frequency dependant, it is possible to make use of a linear combination of both L1 and

L2’s pseudoranges to further reduce the effect of ionospheric delays.

• Ephemeris data – this is the error in the transmitted position of the satellite. Ephemeris

error is typically around 1 metre, although this error grows as the time from the last

transmitted NS increases.

• Satellite clock – before being corrected by the control segment, clock errors can account

for ranging errors of up to one metre.

• Troposphere – changes in refractivity cause errors of around 1 metre.

• Multipath – multipath interference accounts for around 0.5 metres of ranging error.

• Receiver errors – Errors in software and hardware can account for errors of various mag-

nitudes. However generally these are rounding errors, which are negligible.
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3.3.2 Fixed GPS Receivers

A great many fixed position GPS receivers are positioned around the world, collecting position

data, which are then used for monitoring tectonic shift and crust strain, as well as for cartog-

raphy and precision timing. If the correct data are saved, data recorded by these receivers can

also be used to analyse delays caused by atmospheric regions - in particular the ionosphere.

These delays can then be used to derive information on electron concentration. Thankfully

many receivers output data in a format which can be assimilated fairly easily. GPS receivers

are mainly situated in areas where there are geographical fault lines, they can also be very

expensive, and so tend to be grouped in countries which are more affluent. These factors mean

that the distribution of receivers is largely random, and because of the nature of the system,

highly sparse.

3.4 Reconstructing GPS Data

As well as standard reconstruction methods, it is possible to use tomography to reconstruct

3D images of electron concentration, see for example [29]. These inversions can provide high

resolution imagery, but require large amounts of data, and so do not very well work at very low

sparsities. This means that normalised convolution is ideal for situations where tomography

fails.

Before data can be used for 2D reconstructions, they must first be converted from L and P

code phase measurements into spot values on a fixed height shell. This known as the thin sell

model (TSM) approach, and models the ionosphere as an infinitesimally thin shell, at a given

height, normally between 300 and 400 km [30, pp. 102]. The disadvantage of this approach

is that information on the vertical structure is completely lost, the main advantage is that it is

computationally simple.

Conversion from phase data to TSM data involves several steps, which are outlined below:

1. Input carrier phases must be converted into pseudoranges, and then differenced. For the

L-band phases, this is done by multiplying them by the speed of light, and dividing by

the signal frequency. The peudoranges are biased because of systematic errors, called

interfrequency biases, which can be split into a receiver component br, and a satellite

component bs. Biases are generally calculated by assuming that the total bias is con-

stant over the time between each particular satellite pass, and using a least squares fit to

measurements to retreive the bias sum [7].

2. These pseudoranges are then differenced.

3. These difference values are then multiplied by 9.5196 × 105 to convert them into total

electron content (TEC) units. This is known as slant TEC, because it corresponds to all of
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the electrons encountered on the slanting path between the satellite and receiver1.

4. Next, to project these value onto the shell, a correction must be applied to take the satel-

lite elevation, and hence path length into consideration:

V ′ =
V

√

r2 − r2e cos θ
(3.1)

The output from this stage will be a set of scatter values, containing latitude, longitude

and TEC information.

5. Finally, the scatter values must be projected onto a matrix. This is done using a grid of

latitude and longitude values, which are used to set the values of the matrix grid. The

resolution of this grid has an large bearing on the sparsity of the data to be reconstructed

see chapter 1. Figure 3.4 shows the effect resolution has on sparsity using actual GPS

input data.

Once these steps have been completed, the data are said to have been gridded and are ready

to be reconstructed. For example input images, see figure 4.1. The dark rectangles represent

the positions on input pixels. This input data is suitable for reconstruction using an suitable

reconstruction method, for example cubic or linear Barycentric interpolation, however, when

the grid resolution is high, or there are few receivers available, the corresponding input sparsity

will be higher, and these interpolation schemes will fair badly.

3.5 Outputs

This section show some example reconstructed data. Figure 3.4 and 3.5 were reconstructed

using NC, with a filter size of 80 × 80, and ANC respectively and refer to 2040–2050 GMT on

30th October 2003. This corresponds to a period of intense geomagnetic activity, due to several

large CMEs arriving at the magnetosphere in a short time.

11 TEC unit (TECu) is 1016 electrons per m
2.
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Figure 3.3: GPS thin shell data, projected onto various grid resolutions.
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NC Performance Evaluation

In this chapter, the performance of NC will be evaluated, following some of the guidelines given

in the Best Practice document [31, pp. 6]. This will consist of two stages.

1. The first section will be a scenario evaluation in which algorithm performance will be

classified for specific scenarios, with a view to obtaining the best operating parameters.

2. The second stage will be a technology evaluation, which will attempt to characterise the

algorithm in terms of how it behaves when input conditions are gradually changed, over

a range of different parameter settings. The same data used to characterise the algorithm

will then be used with other algorithms to allow comparisons to be made.

4.1 Experimental Procedure

The data used for reconstructions in this chapter will consist of GPS data which have been

projected onto a thin shell, as described in section 3.4. Each sparse input frame consists of

data drawn from a subset of available GPS ground stations, over a time period of 10 minutes.

The data are then manipulated by removing the points associated with various subsets of the

sites, which has the effect of changing the overall sparsity of the input. Figure 4.1 shows how

changing the subset of sites changes the sparsity of the input points. For each subset of data

(e.g. all, ½, ¼), the following procedure is carried out:

1. For each site in the input data subset:

2. Remove the site from the input data. This corresponds to several input points, because

one ground station can generally see several satellites.

42



4.2. SCENARIO COMPARISON 43

3. Reconstruct using the modified input data.

4. Compare the reconstructed data with the removed data. This should only be done at the

specific points which were removed. This could be done using various metric, but the

mean sum of absolute value of differences (SAVD) works well.

5. Loop to step 1.

6. Average the mean SAVDs to obtain site-invariant mean SAVD.

Definition 9. Mean SAVD

Mean SAVD =
1

MN

M
∑

x

N
∑

y

‖
[

f(x, y) − f(x, y)
]

‖ (4.1)

Where, the symbols’ meanings are as in (2.6). In particular, f(x, y) represents the reconstructed

data at the point not used in the reconstruction, and f(x, y) represents the values of the unused

input data.

This process ensures that only unseen data are used for testing the reconstruction output, and

that results will not be depend on which sites were removed.

4.2 Scenario Comparison

In standard NC, the primary adjustable parameter is the size of the filter used for the reconstruc-

tion. The “optimum” mask size is the mask size for which the output error (when compared

with unused, actual inputs), is the lowest.

To find the optimum mask size for a given set of input data, the same input data are recon-

structed using a range of mask sizes. For this investigation, the masks used were isotropic

Gaussians of dimension 50–200 increasing in steps of 10. After reconstructing the data with

each mask size, the mean SAVD error can be calculated, as described above, and a graph con-

structed, showing mask size against the associated mean SAVD. This graph will generally have

a similar quadratic form to figure 4.2, meaning that a clear minimum is present. The mask size

that corresponds to this minimum is the optimum mask size.

Another useful metric for comparisons is the mean distance to the nearest neighbour of any

given pixel in a given matrix of input data (including point where no input data are present).

This can be found using ℓ2
N , where N is the total number of pixels in the input, it therefore

describes the mean displacement required to move from any given point in the input to the

closest point with an associated value.

Figure 4.3 shows the optimum mask size and mean neighbour distances derived using the input

data described in section 4.1. Unfortunately, not curve can be fitted because the data are so

widely spread. Investigation of different characterisations of input distributions are necessary
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Figure 4.1: Examples of sites used for reconstruction.

in order to derive more useful relationships between the input and optimum filter sizes (see

section 4.1).

4.3 Technology Evaluation

Testing against strawman algorithms is a common way of evaluating an algorithm’s behaviour.

In this case, linear and cubic interpolation are obvious candidates because of their ubiquity, and

availability in packages like MATLAB.

This section’s tests used reconstructions which were carried out for 4.2, in addition to these

reconstructions, the same input data were also reconstructed using linear and cubic Barycentric
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Figure 4.2: Mask Size and mean SAVD for input data where all sites are present. The optimum
mask size is clearly 100.

interpolation. Mean SAVD values were calculated using unused data, as above, and the mean

SAVD values used to represent the performance of NC were the values associated with the

optimum mask size in each case.

These sets of values were then averaged across the input data sets which differed by only one

site (not across the sets created by halving inputs etc.). Variances were also taken, and the mean

distance to nearest neighbour metric was calculated, and averaged in the same way as the data

above. This produced a data set describing the mean SAVD and distance to nearest neighbour

for many different distances. Figures 4.5 and 4.6 show aggregated data points from 22 time

slices, using full, halved and quartered sites. Figure 4.7 shows these two graphs overlaid, along

with error bars showing SSD variances, and lines of best fit.

Only linear interpolation and NC results are shown, because cubic interpolation performed

exactly the same as linear interpolation. Examination of the code used reveals that its gridding

functions are based on a Barycentric interpolation, as described in section 1.1.2. Therefore it

must be the Delaunay triangulation breaking down when the data are very sparse which causes

the interpolation to perform poorly.

Figure 4.7 shows how the sum squared difference (SSD) changes as the average distance to

the nearest neighbour increases. The cubic line of best fit shows the output error for NC being

generally (slightly) lower than cubic.
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Figure 4.3: Optimum Mask Sizes and Mean Neighbour Distances

Reconstruction Equation RMS of fit residuals
NC f(x) = 11.290x3 + 0.069x2 − 1.526x− 0.001 2.335
Cubic f(x) = −0.001x3 + 0.090x2 − 1.866x+ 13.376 3.68141

Table 4.1: Parameters for the fits in figure 4.7.

Where column 3 in table 4.1 is:

RMS of residuals =

√

sum squared residual (SSR)

degrees of freedom (NDF)
(4.2)

Another interesting result is the difference in average error variance between NC and linear

interpolation. Across the entire input range, table 4.2 shows that the mean variance of NC

was 12.5083, whereas the mean variance for cubic interpolation was 32.943, indicating that

NC is much less sensitive to changes in the input distribution. Also, as expected, the variance

of linear interpolation is slightly lower than that of cubic interpolation, suggesting that linear

interpolation is slightly less sensitive to input sparsity than cubic.

Table 4.2 was generated by taking the mean of the mean SAVD values generated for each time

period examined, and taking the mean value of the SAVD variances – they are therefore invari-

ant of the sites used in the reconstruction. The figures in the NC (optimum) row correspond to

the filter size which produced the lowest error output.
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Figure 4.4: Example NC test output data.

Reconstruction SAVD Variance
NC (optimum) 1.4763 12.5083
Linear 2.2413 30.802
Cubic 2.2929 32.943

Table 4.2: Mean SAVD and variance for various reconstruction types.
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4.4 Conclusions

This chapter has examined NC by looking at specific scenarios, and attempting to find optimum

filter parameters, and by comparison with other popular reconstructions in order to assess its

relative performance. This has highlighted three main results.

• Mean distance to nearest neighbour is not a very useful metric when searching for useful

relationships between optimum mask size and the sparsity of input data, as figure 4.3

shows. Other metrics may provide more useful, or usable, curves than the relation. This

is discussed in section 5.1.1.

• NC performs better than linear and cubic Barycentric interpolation schemes for all of the

sparsities that were tested. This suggests that NC is better for reconstructing sparse data

than triangulation based approaches.

• NC has a lower error variance than Barycentric interpolation. This suggests that NC’s

behaviour and output quality are less dependent to changes in the distribution of input

points than Barycentric interpolation – a clear advantage in reconstructing who’s sparsity

and distribution are highly variable.

The next chapter aggregates the conclusions from earlier chapters, and this chapter, before

describing various items of further work that these lead to, as well as other further work that

has not been addressed directly in the body of the report so far.
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Conclusions & Further Work

Normalised convolution techniques have been applied in several areas, such as medical imag-

ing, and traditional image processing. So far though, they have not been applied to geophysical

data.

This report has demonstrated that NC can be used to reconstruct data at sparsities where other

techniques break down. It has also shown that NC provides consistently lower error that other

interpolation techniques on real data – suggesting that it is a good choice for reconstructing

such data.

NC has been sucessfully employed in the reconstruction of GPS TEC data, and shows lower

error variances than linear and cubic interpolation across the range of input sparsities. This

suggests better stability than triangulation based interpolation, which means that NC is a very

good choice for datasets which are highly sparse.

Further work is needed in classifying input distributions in order to improve adaptation, be-

cause mean distance to nearest data point results in a distribution which is best characterised

by an asymptote, implying extreme sensitivity to inputs.

An initial adaptive NC scheme has been implemented, and shown to perform well on the ‘Lenna’

test image, at high sparsities, however a more complete evaluation is needed in order to draw

conclusions about its ability to reconstruct geophysical data.

Work on NC has hinted at the fact that deriving clear relationship between optimum filter sizes,

and input characteristics would allow the development of better adaptation algorithms, which

better adapt to the input data, and its spatial distribution. The current ANC implementation

makes use of the ℓ2 norm, as a simple product, where as figure 4.3 shows that this is clearly

not the best approach. As mentioned above, further evaluation will reveal clearer relationships

between input data and optimum filter parameters.

50
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5.1 Further Work

There are three main categories of further work, implementation, covering improvements,

changes and characterisation of the underlying algorithms in ANC, application, covering ap-

plying ANC and NC techniques to new data sets, and other work which contains work not

directly related to the content of this report. The timescales involved in completing these tasks

will be discussed in section 5.4.

5.1.1 Implementation

Input Characterisation

As well as sparsity, discussed in definition 2, a large number of other parameters can be used

to characterise sparse data. This is because sparsity carries no information about how the data

are distributed spatially.

The most releant characterisation of input distributions is likely to be the use of image moments.

Definition 10 (Image Moments). Image moments allow an image to be characterised using

various weighted sums of pixel values, or in this case, positions. Because image moments

characterise two dimensional distributions, there are two parameters, p and q.

Mpq =
∑

x

∑

y

xpyqI(x, y) (5.1)

If the image being examined is a binary image, then when both p and q are 0, the output will

be the area (or the sum of non-zero pixels). Diving this by the total size of the image will give

the sparsity of the image.

The centroid of the image (also known as centre of mass) can be found using the following:.

x =
M10

M00
, y =

M01

M00
(5.2)

The can be used to derive various moments about the centre (or mean) of the image. These

are known as central moments, and can be defined by the following equation:

µpq =
∑

x

∑

y

(x− x)p(y − y)qf(x, y) (5.3)

Using second order central moments, information about orientation can be exctracted. This is
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done by forming a covariance matrix, and solving for its eigenvalues and vectors. The angle of

the eigenvector associated with the largest eigenvalue is the angle of the principle axis of the

image.

Evaluation of ANC

A more complete technology evaluation will help assess how well ANC works on GPS data of

various sparsities, compared to other algorithms. Currently, only a limited comparison using

the ‘Lenna’ test image is available. Testing ANC on the same input data as were used to test

NC, whilst changing parameters like aspect ratio, and smoothing will help to characterise ANC

under varying input conditions.

A scenario comparison will help determine the optimum input parameters for running on GPS

data or various sparsities. Currently, these parameters include various smoothing filters, as

well as mask parameters, such as aspect ratio and size constraints. Changes to the adaptation

methods could alter these. Scenarios to be examined should include a wide variety of input

sparsities and distributions, in order to ensure the statistical significance of the results. If

possible, a relationship between the optimum parameters and input distribution and sparsity

will be derived.

Comparing the operation, and output of kriging with ANC will probably also prove instructive.
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5.2 Applications

5.2.1 Reconstruction of Highly Sparse Historical GPS Data

Various data GPS data sets exist which are too sparse to realistically reconstruct using tomog-

raphy. It should be possible to reconstruct them using NC or ANC in order to study the iono-

sphere’s behaviour. The advantage of this approach over direct interpolation schemes is the

lower error at high sparsities. The reconstructed data could then be analysed using motion es-

timation and relaxation labelling, allowing anomalies to be tracked as they convect across the

polar cap. Vectors formed during the tracking could also be checked against modelled E × B

drift vectors, allowing further validation of NC and ANC.

5.2.2 Reconstruction of Other Geophysical Data

ANC and NC could be used to reconstruct different geophysical data sets. For the reasons

mentioned in the introduction, sparse data sets are very common in geophysics, and so there

should be many areas in which NC techniques can be used.

One example is ARGO float data. ARGO buoys are neutrally buoyant devices designed to

measure salinity and temperature as a functions of depth in the world’s oceans. Normally they

sit at a ‘parking depth’ of 2000 m, but every 10 days, they inflate an external bladder, and

rise to the surface over about 6 hours. During this time, the device measures temperature and

salinity, and when it reaches the surface, it transmits the data is has gathered to the Système

Argos (http://www.cls.fr/html/argos/welcome en.html), which also calculates the bouy’s

position to within 100 m. Système Argos is a doppler based positioning service, which operates

using at least two satellites, and also allows data uplink and downlink.

Because ANC is data driven, meaning that specific models of the input data are not required, it

could be used in situations where a result is required quickly for visualisation or sanity check-

ing. It could also be validated against model-reconstructed data, in order to find the optimum

reconstruction parameters, eventually allowing it to be used as a quick drop-in replacement for

the models.

Another area of research could be the derivation of ‘slices’ or salinity or temperature – or fields

at a given depth. This could be challenging, because at any given time only a few of the bouys

will be at that depth. This means that some kind of inference, based on past measurements, or

current measurements at different depths might be necessary. In this case, fusion of ANC with

models would be very useful.

http://www.cls.fr/html/argos/welcome_en.html
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5.2.3 ANC Adaptation Improvements

As mentioned above, scenario comparisons of both NC and ANC could be fed back into ANC to

improve the choice of filter parameters for given input scenarios. Similarly, in data sets where

additional information is available, it could be beneficial to make use of this information in the

reconstruction.

In cases where, for example, spatial covariance is known, fusing this information into the filter

adaptation could improve the accuracy of the output. For this reason, further examination of

kriging, and in particular semi-variograms will be conducted.

Also, examining Bayesian techniques could pave the way to providing accuracy estimates, as

with Kriging and Kalman filters.

Other possible improvements could include using different distance transforms, including dif-

ferent order Minkowski distances, and Veronoi diagrams, which could improve the way in

which a given points nearest input samples are found.

5.2.4 Extension into Extra Dimensions

There are a large number of cases where three-dimensional normalised convolution would be

useful. For standard NC, this would be fairly trivial to implement by replacing the standard

filters with 3D ones.

Extending AND into 3D would probably be more complicated. The main problem being extend-

ing the adaptation algorithms, whilst keeping them relatively fast.

Libraries like PeakStream (http://www.peakstreaminc.com/) could accelerate the process by

harnessing the unused power of a GPU. For 3D convolutions and transformations, the speed

increase could be vary large.

5.3 Other Work

Normalised convolution’s ability to reconstruct sparse data suggests that it has potential to

work as a compression scheme. Recent work has highlighted the similarity of a field known as

compressive sensing (see http://www.dsp.ece.rice.edu/cs/), which attempts to use a sparse

sensing in order to compress data as it’s recorded. Normalised convolution based techniques

will lead to simple and fast compressive sensing based systems.

http://www.peakstreaminc.com/
http://www.dsp.ece.rice.edu/cs/
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5.4 Plan of Future Work

This section details goals for the next two years, the remaining duration of the project.

5.4.1 Goals for Year Two

• Complete work on characterising input data, and characterise current ANC algorithm.

• Complete case study using Halloween Storm data, publish results.

• Submit paper to BMVC/ICIP. Present posters or talks, subject to acceptance.

• Begin work on ARGO data.

5.4.2 Goals for Year Three

• Complete work on ARGO data. Publish results.

• Write thesis.

5.4.3 Thesis Chapters

This list show briefly how the project thesis will be structured:

• Introduction: including background on reconstruction and gridding, then normalised

convolution.

• Adaptive Normalised Convolution:

showing how normalised convolution can be adapted to improve output quality.

• Application to GPS TEC Mapping:

starting with GPS background, and moving on to reconstructing GPS TEC data.

• Application to ARGO Ocean Salinity and Temperature Mapping:

again, starting with an introduction to the ARGO system, and moving onto reconstructing

data.



A

Variograms for Spatial Data Analysis

This chapter represents initial investigation into variograms, which was completed after the

initial report was completed.

A.1 Introduction

Variograms, and by extension semi-variograms have found wide use in spatial data analysis

since the first half of the 20th century, as methods for estimating the spatial autocorrelation

of data sets. However, the term variogram was not coined until 1962, by Matheron [32] – a

man widely regarded as the father of spatial statistics. Whilst originally conceived as a tool for

estimating ore reserves in the mining industry, variograms are now considered one of the most

important tools in spatial data analysis, an area which has become known as geostatistics.

The basic definition of the variogram is as follows:

var(Z(s1) − Z(s2)) = 2γ(s1 − s2), for all s1, s2 ∈ D (A.1)

In the above equation, D represents the thing that has been sampled, and s1 and s2 represent

sample indices. Z(si) refers to the value associated with sample si). It is a function of the value

of difference between s1 and s2, which corresponds to the distance between samples.

The variogram above is given by 2γ(·), dividing by two gives the semi-variogram (γ(·)) – the

distinction is important because, as Cressie [33] puts it:

. . . there is too much to loose from missing 2s.

56
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The classical variogram estimator was defined my Matheron [32] as:

2γ̂(h) =
1

|N(h)|
∑

N(h)

= (Z(si) − Z(sj))
2 (A.2)

Where (using the notation of Cressie [33, pp. 69]):

N(h) ≡ {(si), Z(sj) : si − sj = h; i, j = 1, . . . , n} (A.3)

This means thatN(h) is the set of pairs of sample positions, and |N(h)| is the number of distinct

pairs in N(h). In time series analysis, h is known as lag. For the one-dimensional case this will

be equal to the binomial coefficient N !
K!(N−K)!) where k = 2, and N is the number of available

samples. The two dimensional case is more complicated, and will be discussed later.

As mentioned above, the variogram provides an analysis of spatial autocorrelation of a set of

measurements. When data for a one-dimensional series with no gaps, the variogram can be

approximated by [16, pp. 273]:

γ(h) ≃ cvar(Z)(1 − a.c.f(h) (A.4)

Where a.c.f(h) is the autocorrelation function, and c is a constant.

When the data points are spaced irregularly, the condition imposed by (A.3) must be relaxed,

since not all lags will be possible. In this case, the estimator is smoothed by defining a tolerance

region around each lag, and then estimating the variogram coefficients as in (A.2). In this case

though, a weighted average could be used in place of the arithmetic mean (see, for example

Omre [34] who found that the robust estimator shown below (A.5) gave slightly worse results

that (A.4) for the ’idea case’ but better results otherwise). Tolerance regions should be chosen

such that as many as possible contain a statistically significant number of samples (over 30).

Generally the tolerance regions will be chosen such that each region is disjoint, although a

moving window based estimator could be used, in which case, there will be overlap between

regions.

A.2 Robust Estimators

The classical estimator, given in (A.2) is not particularly robust, meaning that the results will be

significantly altered by contamination by outliers. For this reason, various people have looked

at robust statistical methods for variogram estimation. Two possible robust estimators are:
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2γ̄(h) =
1

|N(h)|
∑

N(h)

=

{

|Z(si) − Z(sj)|
1

2

}2

(

0.457 + 0.494
|N(h)|

) (A.5)

and:

2γ̃(h) =

[

med
{

|Z(si) − Z(sj)|
1

2 : s1, s2 ∈ N(h)
}]4

0.457
(A.6)

Where the denominator terms correct for bias. The next section shows how these estimators

behave relative to one another.

A.3 1D Example

The following MATLAB code generates a data set with autocorrelation, and then samples it

using random stratified sampling, which is described in section A.5:

data = conv(ones(15,1)./15, randn(200,1));

samp = 4;

% random stratified sampling

xx = [1:samp:length(data)-1];

xx = xx + round(rand(size(xx)) * samp);

yy = data(xx);

The three estimators, and the variogram generated using (A.4) are shown in figure A.2.

The main features of note are the fact that the autocorrelation estimator is far too smooth, and

the fact that the robust median estimator is very noisy compared to the other plots. In general,

though, there is good correlation between all four curves. The fact that they are all similar to

the autocorrelation function, a standard analytical tool, means that they can be trusted as good

estimates of spatial relationships within the input data.

A.4 2D Variograms

When the data sets is 2D (or higher dimensional), the lag h becomes a vector. This leads to the

question of how to partition the lags, since data could have spatial autocorrelation which is a

function of direction as well as distance. Data which have variograms which are not dependent

on direction are known as isotropic, similarly, when the variogram is a function of direction, the

data are anisotropic.
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Figure A.1: Example autocorrelated signal.

Standard practice involves converting the Cartesian lag vectors into a polar form, and then

grouping all lags within a certain range of angles and magnitude together. Converting angles

to be modulo π increases smoothing further.

A.5 Example: Simulated Isotropic Data

Data in this section were generated according to the method given in Omre [34], that is:

• Create a 120 × 120 field of normally distributed data.

• Filter this with a circular filter of radius 15 – thereby adding autocorrelation, since the

circular filter acts as a kind of running mean.

• Sample the data using stratified random sampling (see below). Use a block size of 8 × 8,

and take one sample from each block.

The data used for this report can be seen in figure A.4.

Stratified random sampling [35, pp. 19] works by dividing the sample points into subareas

(or strata), and then randomly choosing a set number of points from within each area. This

approach has been shown to work well in situations where there is strong local positive corre-
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Figure A.2: Example Sample Variogram, using the classical estimator (A.2), the two robust
estimators (A.5) and (A.6) and the a.c.f estimator (A.4).

lation – such as the imposed correlation above.

The variograms shown in figure A.5 were generated using a tolerance of ±2.5, and encompass

all lag angles. It is interesting to not the similarity of all three estimators in this case – in

particular the robust median follows the classical estimator very closely.

A.6 Example: Wolfcamp Aquifer Data

In order to verify 2D variogram generation code, a test was run on some commonly available

data: the Wolfcamp Aquifer piezometric-head data, taken in 1986. Piezometric head data

readings give the elevation of the water table at a given point, measurements are taken by

drilling a hole into the aquifer and allowing the water to rise until it reaches equilibrium. The

height of the surface above sea-level forms the measurement. The Wolfcamp Aquifer data were

taken in a region about 300 miles square (∼ 200 km), around Amarillo, Texas, to assess the best

position for a nuclear waste ’repository’. Figure A.6 shows the measurements as a 3D scatter

plot. The data are clearly anisotropic, in that there is a clear different in how the values change

with direction. For this reason, two variograms were taken, following the lead of Cressie [33,

pp. 261]. Lags were partitioned into 8 km bins, and one variogram is constructed using lags

with angles from the range [0 ≤ θ < π
2 ] radians, the second variogram was constructed with
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Figure A.3: A Lag vector, showing an example tolerance region. The black spots show lag
vector end points which would be accepted.

angles from the range [π2 ≤ θ < π], where θ is the angle found when converting from Cartesian

to polar form.

A.7 Example: GPS Data
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Figure A.4: 2D autocorrelated data.
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Figure A.5: Isotropic Variograms created from simulated 2D autocorrelated data, and then
sampled using random stratified sampling.
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Figure A.6: Stem plot of Wolfcamp Aquifer data. Coordinates are from an arbitrary (unspeci-
fied) origin.
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Figure A.8: Example GPS data
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