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ABSTRACT
A two-stage method for segmenting and estimating the motion of ionospheric electron density enhancements
is presented. These enhancements occur during geomagnetic storms, when matter ejected from the sun enters
the upper atmosphere. The first stage of the proposed method segments the enhancements in the images by
using a tuned attribute morphology filter, based on feature contrast. A temporal feedback mechanism is also
employed to improve the temporal stability of the outputs. The second stage makes use of shape contexts
to calculate boundary matches. These matches are then used to estimate motion vectors and a post filter is
applied to detect and correct anomalous vectors. Overall, the scheme produces data-driven estimates of the
motion of ionospheric electron density enhancements that can be used to study the evolution of ionospheric
storms. Illustrative results are presented for a sequence of images from the Halloween storm of 2003. The
results of this technique can also be used to validate models and data from other instrumentation which images
the ionosphere during storms.

1. INTRODUCTION
The ionosphere is the region of the atmosphere, extending from an altitude of approximately 50 km and to over
1000 km. In this region, free electrons can exist for short periods of time, and form an electrically conducting
plasma. These electrons are liberated when extreme ultra violet (EUV) light from the Sun ionises neutral
atoms in the atmosphere. The free electrons then form a plasma which has various effects on electromagnetic
waves, including delaying or blocking their propagation at certain frequencies. The extent of the ionosphere
is dependent on a variety of variables, most importantly the diurnal cycle, as the number of electrons is
dependent on the amount of sunlight. During the day, layers of ionisation may be found as low at 50 km
whereas at night there is less photo-ionisation and electrons recombine with positively charged ions, leading
to a depletion in ionisation. At this time, the ionosphere can be considered as starting at over 200 km. The
vertical extent of the ionosphere is marked by its merging with the solar wind at very high altitudes. One of
the most important measurable quantities associated with the ionosphere is the number of electrons in a given
volume – or the electron density. This density changes in response to many stimuli in addition to the diurnal
cycle, and in particular to the injection of extra material from the Sun. When large amounts of material are
ejected from the Sun, the Earth’s magnetic field and the ionosphere are disturbed. This event is known as a
geomagnetic storm.

Ionospheric enhancements are increases in electron density that occur during geomagnetic storms, such
as the event during Halloween of 2003. During this, and other similar events, patches of enhanced electron
density, known as storm enhanced density (SED), travel across the northern polar cap towards the night-side
of the globe in a convective pattern known as a tongue of ionisation (TOI). These complex convective patterns
are the subject of various scientific studies.1, 2

The traditional approach to analysing convection patterns of this type is to use electric and magnetic fields
models, such as that proposed by Weimer3 and the IGRF.4 However, model-based approaches are only of
limited use in studying specific storms as, by nature, they tend to reflect normal, quiet conditions. This paper
addresses this problem and proposes a data-driven approach for analysing the motion of SED which can be
used to study the evolution of ionospheric enhancements during storm conditions.
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Figure 1: The processing pipeline for the TEC segmentation and matching scheme.

More specifically, we describe a two-stage technique that applies image processing methods to time-varying
sequences of images of the total electron content (TEC) of the ionosphere, in which regions of SED can be
identified as having a TEC value above the background level. The first stage of our approach identifies SED in
the TEC images using tuned morphological attribute filters, followed by a watershed segmentation. Temporal
feedback is also used to enforce a higher degree of consistency between the segmentation results for each frame
in the sequence. The regions of SED are synonymous with the TOI and once their boundary has been identified
the second stage uses the shape correspondences between successive frames to estimate the inter-frame motion
and hence the underlying convection pattern. The processing pipeline for the complete process is presented
in Fig. 1.

The format of the remainder of this paper is as follows. Section 2 describes the data used throughout
this study, including the specific problems that result in very low-resolution images of the regions under
study. Section 3 discusses the development of the segmentation technique, including information on how
filters were tuned to improve performance using segmented images and a temporal feedback methodology.
Section 4 presents the method used to infer inter-frame motion, by applying shape contexts to the segmented
boundaries. Finally, section 5 discusses the conclusions that can be drawn from this study, as well as future
work on enhancing performance and quality, and uses for the output vectors.

2. ELECTRON DENSITY DATA AND THE TONGUE OF IONISATION
The data used for this study consists of TEC maps which were produced using the MIDAS software from the
University of Bath.5 MIDAS performs tomographic inversions using path measurements of electron content
between global positioning system (GPS) receivers and satellites. The maximum resolution of output field
that can be produced by any given inversion algorithm is heavily dependent on the number of available path
measurements, which means that the number of GPS receivers is an important factor in determining output
resolution. There is a strong correspondence between population density and the number of GPS receivers in
a given area, such that the resolution of the TEC images varies with geographic location. For example, over
North America, where the population density is relatively high, there are over 500 GPS receivers operated by
the IGS, whilst in more sparsely populated areas, such as the polar regions (considered here), the number of
receivers is considerably lower and so the resolution of the TEC maps that can be produced is low.

The convective pattern to be analysed in this study is a region of SED known as the TOI. After its initial
appearance at lower latitudes, the TOI soon moves into the northern polar region, so images of the TOI tend
to be characterised by their low resolution. The images used in this study were formed by inverting GPS
path measurements on to a thin shell at an altitude of 400 km to produce images of 25 × 25 pixels in size,
corresponding to a grid covering a 100° square region, centred on the north pole. Fig. 2 shows the area covered
by the image data, and the direction of the incident solar radiation. Coastlines and regions are marked to
demonstrate how the grid is positioned. The thicker black lines mark the pixel extents and show how the
images are warped when projected onto the globe. Fig. 2 also shows an example TEC image of the polar
region in which the TOI can clearly be identified. This region consists of a three-dimensional volume with
a higher than normal number of electrons. The overall aim is to track this feature as it moves through the
image sequence. This motion is expected to begin in the bottom left, and move up to the top right over the
course of the storm, corresponding to the convective pattern which has previously been described.1, 2
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Figure 2: A schematic diagram showing how the displayed images relate to Earth’s geography, and the direction
of incident solar radiation. The direction of the sun will precess as the Earth rotates during the 3 hour period.

The data used to illustrate our scheme for segmenting and tracking the TOI consists of a sequence of
25 × 25 pixels images covering the period from 20:00 to 23:00 UTC on 30th October 2003, with a temporal
resolution of five minutes. Fig. 3 shows four frames from the sequence, with a time separation of 50 minutes
between each pair. These clearly show a growing region of enhancement, in Fig. 3a—3c, which then splits
off in Fig. 3d. Our aim is to study the evolution of this storm using the two-stage segmentation and motion
analysis scheme described in Sections 3 and 4 respectively.

3. SEGMENTING THE TONGUE OF IONISATION
The TOI images can be considered to be composed of three main components: regions of SED corresponding
to significant regional maxima; noise and artefacts corresponding to other maxima (and minima), and the
remainder of the image which can be considered background. The aim of the segmentation stage is to correctly
discriminate between the TOI and the other image components. Once the images have been segmented, it is
possible to extract information about the enhancements, including their boundaries which can then be used
for estimating the motion of the TOI, and hence studying its evolution.

A simple technique for separating objects from background or clutter is optimal thresholding.6 This
approach is appropriate when the object of interest has a different range of values than the background, as is
the case with the TOI. It is also designed for use on data with a bi-modal intensity distribution. However,
histograms of the TEC data for the four images from Fig.3, shown in Fig. 4, show that the TEC data is
characterised by a distribution with only a single peak, which corresponds to the background value. The TEC
values which correspond to the TOI occur in the tails (on the right hand side) of the illustrated distributions.
This, coupled with the presence of noise, and the fact that the maximum TEC value changes over time means

(a) 20:00 UTC (b) 20:50 UTC (c) 21:40 UTC (d) 22:30 UTC (e)
Figure 3: Example false-colour frames from the images sequence from Halloween 2003. Images (a)—(d) are
each separated in time by 50 minutes, and are up-sampled by two. The colour-scale is shown in (e).
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Figure 4: Histograms showing the distribution of TEC values in the data. The peaks on the left represent
background data (low values), and the area on the right represents both noise and the TOI.

that simple thresholding is doomed to failure. Other segmentation methods, such as those based on image
texture are, also inappropriate due to the low resolution and smoothness of the data.

To overcome these problems, a segmentation scheme based on mathematical morphology (MM) is proposed.
Morphological filters have a number of advantages over traditional filters, most importantly shape preservation
and idempotence. MM provides a number of tools for feature extraction and segmentation and many of these
have been applied to remotely sensed data. For example, Soille and Pesaresi7 (2002) provide a topical review of
MM applications in remote sensing, ranging from segmentation to skeletonisation. Pesaresi and Benediktsson8

(2001) propose a morphological segmentation method using the derivative of the morphological profile with
residuals from opening and closing by reconstruction. This method is extended to multiple scales by using
increasingly large structuring elements. More recently Akçay9, 10 (2007,2008) designed a hierarchical MM
segmentation technique for remotely sensed imagery. This method creates morphological profiles by applying
structuring elements of increasing size to each spectral band. Image patches extracted at different scales
are then merged to create meaningful objects using spectral homogeneity and connectivity to optimise the
groupings.

Whilst the segmentation schemes proposed in Refs. 7 to 10 were developed for application to very high-
resolution (VHR) images, the images in this study are characterised by extremely low resolution. In these
images, the lack of texture and low size mean that multi-scale segmentation methods are unsuitable. To
help overcome these problems a segmentation scheme based on attribute morphology is proposed. Attribute
morphology is the extension of traditional greyscale morphology to use more general feature information
in the opening and closing operations. Typical attributes include area (the most commonly used feature),
moments, orientation, contrast and many other measurable properties of image structure. Here, attribute
morphology is advantageous when compared with standard morphology as it does not require the use of
structuring elements, all of which would be large when compared to the dimensions of the images, and so
introduce significant regions of noise. It also allows the filtering action to be finely controlled by attributes
other than shape and size, producing segmentation results that can be tuned according to the properties of
the features under consideration. Another useful property is that of shape preservation, a property shared
with reconstruction based methods.

Contrast was chosen as the most suitable attribute for segmenting the TEC data due to its low sensitivity
to gradient relative to other attributes, such as area. Whilst the peak SED value within the TOI shows consid-
erable variation over the duration of the storm, the background TEC value is much more stable. Performing
an attribute closing with a suitable contrast limit essentially flood-fills any basins with a contrast value less
than the chosen attribute limit.

In order to choose a suitable contrast value with which to operate the morphological filter, ground-truths
were generated by segmenting the images by hand. These were necessary because of the noisy nature of
the frames which meant that inter-frame differences were not necessarily consistent and that the sudden
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(b) Correlation Comparison
Figure 5: Comparisons of area difference (a) and correlation (b) between frames segmented at various contrasts,
and hand segmented frames. In both cases the contrast with the closest matches to the hand segmented frames
was 33 TEC Units.

appearance and disappearance of small features was common. This process gave rise to a set of binary images,
one for each frame, in which the salient regions were marked.

To find the contrast value for each frame which gave rise to the results most closely matching the corre-
sponding ground-truth images, the data were filtered using a range of contrasts, and the outputs compared
to the ground truths. The optimal value found in this fashion was then used as the starting point for the
segmentations. Fig. 5 shows two image maps illustrating the best contrast parameter for each frame, using two
different criteria – area (darker [around the dots] means a lower difference between the test and hand-segmented
frames), and correlation (brighter means a higher correlation coefficient between the test and hand-segmented
frames). In both cases, similar behaviour can be seen; on average, the contrast value which gave rise to results
closest to the hand-segmentations was 33 TEC units. Fig. 5 shows that the performance of the attribute-based
segmentation is relatively insensitive to the choice of contrast value. Therefore, although the contrast value
here was selected using hand-segmented TEC images, the availability of more data would enable the starting
contrast value to be estimated using training data with little overall loss in performance.

To improve the temporal consistency of the segmentation results over the image sequence, a temporal
feedback system was used, along with the ground-truth derived contrast value. This system operated by
performing an initial segmentation using a contrast closure, followed by a small-scale area-opening to remove
small peaks which were considered clutter. This was then thresholded to give a binary mask identifying the
TOI. The feedback system operated by calculating the change in foreground area between each frame and the
frame preceding it, and then increasing or decreasing (as appropriate) the contrast level in small increments
if the area differed by more than 10%. If the contrast was altered, the image was re-segmented. This process
was repeated in an iterative fashion, until the segmented area was stable or until 10 iterations had occurred.
This helped ensure the correspondence of objects between frames, leading to a smoother motion description.

The above process yielded results which are similar to the ground truth images whilst maintaining area



(a) (b)
Figure 6: Reducing under-segmentation of SED islands using the watershed transform. Example TEC image
from 22:35 UTC on 30th August 2003 (a) before and (b) after watershed transform post-processing.

consistency between frames. However, in a few cases the segmentation was too generous, meaning that some
areas which were separated in the hand-segmented images were left joined by the feedback process. This
occurred when saddle-shaped structures joined features which would otherwise be separate. To mitigate
this problem, a further stage was added to the process. By inverting the input images, masked by the
segmented images, and then applying the watershed transform, thin saddle points joining areas were severed,
as demonstrated in Fig. 6. The segmentation results for the images from Fig. 3 are shown in Fig 7. To obtain
final TOI representations in a form which is smoothed and can be re-sampled, the image boundaries were
traced and then converted to a smoothing-spline representation.

4. MOTION ESTIMATION BY BOUNDARY MATCHING
After boundaries have been extracted, the problem of estimating motion reduces to one of shape correspon-
dence, i.e. given the boundaries for the TOI in two adjacent frames, the aim is to discover how one shape
must be deformed in order to produce the other. The end result of this process is a series of vectors showing
the correspondences between samples on each boundary, which can then be taken to represent cross-frame
motion.

The method used to estimate the cross-frame motion was shape context (SC) matching, a technique for
measuring similarity between shapes, using their boundaries.11 Context matching consists of three steps, the
first two of which can be used to estimate the relative motion of the two shapes. The entire SC process consists
of: solving correspondences between points on the shape boundaries; using these correspondences to estimate
a boundary alignment; summing the matching errors to calculate a similarity measure.

A SC is a histogram which describes the distribution of boundary points relative to an origin point (which
is also part of the boundary). Shape contexts are constructed by picking a point on the boundary, and
subtracting its coordinates from all others. These new values are then converted to polar form, and binned

(a) 20:00 UTC (b) 20:50 UTC (c) 21:40 UTC (d) 22:30 UTC
Figure 7: Images from Fig. 3 segmented using morphological segmentation process described in the text.



to create a histogram. This process is repeated for each point on the boundary to produce a SC for each
possible sample. Shape contexts must be created for both of the shapes being matched, so that a cost matrix
Cij = C(pi, pj) can be computed for every possible pair of context origin points (pi, pj), where pi is a point
on the boundary of the first shape, and pj is a point on the second. The cost of matching is calculated by
comparing the context histograms and can be performed using a variety of different methods, such as the
χ2 cost, Earth mover’s distance (EMD)12 and diffusion distance (DD).13 The latter two are particularly
attractive as they allow ‘leakage’ across bins and thus provide more reliable costs. The DD measure was used
in this study as it was found to be more robust than χ2 and is also both conceptually and computationally
cheaper than the EMD. It also has the added advantage of being physically relevant in this case, as it models
anisotropic diffusion. The DD is based on a multi-scale Gaussian pyramid and is defined by:

K(hi, hj) =
L∑
l=0
|dl(x)|, (1)

where

d0(x) = h1(x)− h2(x) (2)
d1(x) = [dl−1 ∗ φ(x, σ)] ↓2 l = 1, . . . , L (3)

In the above equations, l represents the current layer of the Gaussian pyramid with L layers, ↓2 denotes
downsampling to half-size, σ is the standard deviation of the Gaussian filter φ(·) and h1 and h2 are histograms.
The metric used was the Euclidean distance, which means that the DD is a true histogram metric.

Constraints and extras costs can be added to this technique by modifying the matrix C. For example, a
distance weighting could be added to help ensure that the minimisation only chooses points which are close
in terms of boundary order. Measures relating to image properties could also be added in, although finding
suitable measures is problematic as many such as curvature can be very noisy and introduce ‘pits’ into the
cost matrix. These pits act to constrain the output matches by introducing local minima.

Once the cost matrix has been created, the problem becomes one of weighted bipartite matching, which
can be solved using the Hungarian method, amongst others. This results in a permutation which describes
the optimal mapping between shape boundary points and can be used to calculate the distances between
corresponding boundary points on the two shapes. This is done by subtracting the coordinates of the first
shape’s boundary points from the corresponding points on the second. The result of this process is the set of
vectors required to warp the first shape into the second; their relative motion.

As described in section 1, the image sequence corresponds to a patch over the polar cap. A consequence
of this is that one side of the image is always in sunlight, and one is in darkness. Because of the nature of
the ionosphere, the side in sunlight is continually injected with electrons and ions while the side in darkness
undergoes depletion due to recombination effects. This results in the TOI being drained at its tip, in a fashion
similar to the snout of a glacier, where ice melts and water drains away. If the rate of melting increases, the
snout will appear to retreat whilst water will always flow away. If the position of the snout alone was being
measured, the glacier would appear to be flowing backwards, which can clearly never be the case.

When recombination effects cause the tip of the TOI to retreat, motion estimation using boundary matching
is unable to capture the true motion. This problem occurs towards the end of the image sequence under
examination. Fig. 8b shows an example of this problem occurring due to a slight drop in value at the very tip
of the TOI. Unfortunately, these retreating boundaries cannot be detected by simply examining the vector
directions relative to other vectors in the same frame, as frames where this problem manifests itself tend to
have very noisy vectors in general. For this reason, several techniques to detect and replace these retreating
vectors were evaluated for suitability and effectiveness. The methods of detection included simply thresholding
vectors (a method which fails to capture anomalous vectors, because it does not examine adjacent frames),
subtracting each frame’s vectors from the previous frame’s vectors, interpolated to the correct positions, and
then thresholding using magnitude, angle, or mean and standard deviation. In practice, using a combination
of mean and standard deviation thresholding was found to be the most effective.

After detection, the marked vectors must be replaced. This can be done in several different ways, including:



(a) 21:25 UTC (b) 21:30 UTC (c) 21:35 UTC (d) 21:30 UTC
Figure 8: Example frames illustrating the retreating snout problem. (a)–(c) Frames from before, during and
after the problem occurs, respectively, and (d) the result of detecting the depletion and replacing all the vectors
with vectors interpolated from those from the previous frame.

• Replacing the marked vectors with the vector-median14 of the remaining vectors. As the frames contain-
ing the retreating boundary problem tend to contain noisy vectors, this was found to be unpredictable,
and leads to unrealistic jumps in vector magnitude at the edges of regions of vectors being replaced.

• Replacing the detected vectors with new vectors generated using an affine model of the previous frame’s
vectors. Whilst this tends to give more suitable magnitudes than the previous method, the affine fit
often gives vectors which point a seemingly wrong direction. It also leads to jumps in vectors at the
edges of replacement areas.

• Replacing the detected vectors with new vectors generated by interpolating the previous frame’s vectors
onto the marked vector positions. This was carried out using both standard interpolation and regular-
isation. This gives good results provided the previous frame’s vectors are reasonable. For this reason,
processing should be done on a frame by frame basis.

• Replacing all of the vectors in the frame containing marked vectors with the previous frame’s interpolated
vectors. This is an effective way of getting smooth vectors over the entire boundary, provided the previous
frame’s vectors are smooth. The result of the replacing all vectors in affected frames in this fashion can
be seen in Fig. 8d.

Of the detection and replacement methods tested, replacing all vectors based on thresholding vector mag-
nitude statistics was found to be most effective due to the overall smoothness of the output. From an aesthetic
point of view, it is advantageous because replacing the entire frame does not result in the discontinuities which
are present in the outputs created using the vector median and affine methods.

Fig. 9 shows some examples of output frames with overlaid vectors. These vectors have been smoothed
using the total replacement method described above, and represent the current level of output quality of the
system described here. However, several problems still manifest in these outputs, the most important of which
is spurious border rotation. This phenomenon occurs because of changes in boundary length, which means
that samples across frames tend to lie slightly to one side of one another. This leads to a tendency for the
output vectors to appear to be slightly rotated. One way to try and mitigate this is the use of up-sampling
of output fields to increase their density by fitting warping surfaces.11 This is carried out by separating the
Cartesian components of the motion vectors, and interpolating these onto two separate surfaces.15 One surface
will then describe the magnitude of vectors in each axis, and vectors at new points can be found by taking
values from each surface at the correct position. Using regularisation instead of interpolation will provide
smoother outputs, which should be largely free of noise.



(a) 20:00 UTC (b) 20:50 UTC (c) 21:40 UTC (d) 22:30 UTC
Figure 9: Example false-colour frames from Fig. 3. Vectors are shown after post-processing by replacing all
vectors in frames with detected retreating areas.

5. CONCLUSIONS
A new method for segmenting and tracking features in TEC images of the polar ionosphere during storm
conditions has been presented. Unlike other applications of greyscale morphology to remotely sensed data,
where the current trend is towards using VHR imagery, the application here is characterised by very low
resolution images. Other major challenges result from the non-rigid motion of the TOI and the recombination
effects. To overcome these problems an attribute morphology-based segmentation scheme has been proposed.
This method uses the contrast attribute and produces segmentation results that are robust to changes in the
maximum SED value. In addition, temporal feedback is used to improve the consistency of the segmentation
results by automatically varying the attribute limit through the sequence. The results achieved by this
approach are temporally consistent and show a good correspondence with hand-segmented ground truths.

To estimate the motion of the TOI an approach was developed which applied shape contexts to track
boundary changes in the segmented TOI between successive frames. This method makes use of the shape
contexts of smoothed boundaries (with equal numbers of samples) to estimate correspondences which can
then be converted into motion vectors. Although this was found to be an effective approach when the TOI
feature was stable, it gave erroneous results when the TOI boundary appears to retreat as a result of electron
depletion. To mitigate this effect, a post-processing step was proposed in which the mean magnitude and
standard deviations of a frame’s vectors were compared with those from the previous frame. When certain
thresholds were exceeded, the frame’s vectors were entirely replaced by vectors from the previous frame,
interpolated to the correct positions.

The sequences of TOI images and accompanying motion vectors produced by the segmentation and tracking
scheme produce a useful source of information that, when combined with data from other instruments and
models, can provide a more complete picture of the motion of SED during ionospheric storms.

Future work will focus on the extension of these techniques into an unsupervised system which does not
require manual creation of ground truths. This could be facilitated through the building of a library of pre-
segmented training data. Independent data sources such as vector data from the SuperDARN or EISCAT
radars could also be used both for validation of our results and perhaps more interestingly, the production of
improved motion fields by combining them with our estimates of boundary positions.
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