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Abstract

This report begins by introducting the concepts and background of, remote sensed data, motion estimation (ME)

and non-linear relaxation labelling (RL). It then introduces the idea of multi-channel data, and discusses how a

ME RL system might be extended to use it.

Next, the tools and languages used to implement a ME RL system are described, and an Octave/Matlab toolkit

implementing such a system is introduced, along with various scripts and functions which help simplify certain

operations like plotting, and accessing certain infomation. The usage and style of the toolkit is descried and

explained, allowing future use of the code by others. In the results chapter, several sets of results are shown.

The distribution of active blocks across two channels for various block sizes and variances are analysed, and

results for both single and multi-channel ME and RL are given. Finally, the ME and RL results are discussed,

and conclusions drawn about the distribution, consistency and quality of the output vector fields presents in the

results section.

Finally, practical and future uses for such systems are discussed.
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Symbols and Abbreviations

Symbol Description

DI,J The distance between two blocks, relative to the size of a block.

∆ym or ∆xm The median displacement of a set of vectors.

G The set of all blocks considered neighbours of a given block.

i or j Vectors

I or J A specific template/block.

J → j A vector j within the template J .

n Any of the natural numbers (n ∈ Z).

Ω2J Set of vectors for the template/block (J).

P (n)(J → j) The probability attached to vector j, in template J ater n iterations.

ρ The Cross Correlation Coefficient

Table 1.1: Symbols

Abbreviation Meaning

CCC Cross Correlation Coefficient

CLI Command Line Interface

CVS Concurrent Version System

DSRS Dundee Satellite Receiving Station

GUI Graphical User Interface

IR Infra Red

ME Motion Estimation

MSE Mean Square Error

RL Relaxation Labelling

SAVD Sum of Absolute Value of Differences

SSD Sum of Squared Differences

UM Unified Model

WV Water Vapour

Table 1.2: Abbreviations
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Introduction

Techniques that estimate motion in single channel images have existed for some time, and are now integrated

into everyday technology like satellite set top boxes. Less widespread, is the use of more advanced motion

estimation (ME) techniques, like relaxation labelling, which improve the output of traditional ME schemes, and

are used in fields like object tracking, meteorology and could (eventually) have uses in defense systems and

warfare. Even more obscure are systems which use multi-channel data to estimate motion; a field which is

virtually untouched1.

The aim of this project is to develop a ME system which is capable of using multi-channel data2 in order to asses

the possible advantages that this could give. In order to carry out this task, the following questions need to be

answered:

1. What are the characteristics of remote sensed images?

2. How do traditional ME systems work?

3. When is multi-channel data useful? How can this usefulness be guaged?

4. How can traditional ME systems be adapted to make use of multi channel images?

5. How well do the adapted techniques work on multi channel remote sensed data?

6. How can the above findings be used in practice, and how could they be used in the future?

In the following sections, the above questions will be answered in order, starting, of course, with a discussion

of remote sensed images, and then moving onto an examination of traditional motion estimation systems, how

they can be further improved, and then how they can be extended to support multi-channel imagery.

2.1 Remote Sensed Images

Remote sensed images are generally images which have been gathered electronically using remote instruments

like satellites, probes, or from measurements derived from some other remote platform. Images need not rep-

resent EM information (which is, however, the norm) and could instead show information such as attenuation

due to water vapour, the distribution of certain gasses, or any data that could be plotted spatially.

Remote sensed images are normally characterised by the following:

• Overall low contrast. Most satellite images are greyscale, and are inherently low contrast.

• Low spatial resolution: although this is becoming less and less true, remote links are often low band-

width because of path loss, weight limits or other reason, and therefore resolution is sacrificed. This is not

the case with most modern satelite imagery, where high resolution cameras are often used.

• Non rigid objects: especially in satellite imagery, where there may be clouds which are highly non-rigid,

occlude one another, and have the annoying property of disappearing!

• Low or very low temporal resolution. Unlike video sequences where there could be as many as 25

frames per second, remote sensed sequences tend to have a time between frames of minutes, or hours.

This means that using motion estimation systems like optical flow is totally out of the question.

1See [Phi04]
2See section 3.4
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Motion Estimation and Relaxation

Labelling

3.1 Motion Estimation

This section aims to answer the question: How do traditional motion estimation systems work?.

Motion estimation is a technique which aims to produce some kind of an estimate of the motion between areas

in two or more images. 1

Generally, there are three basic assumptions made by motion estimation systems, these are listed below in order

of importance:

• The maximum velocity that any given object in the scene can travel at is a known quantity. This allows

a search bound to be imposed, based on the fact that the maximum distance the object can have travelled

is the product of the maximum velocity, and the time delay between frames.

• The change in velocity is bounded by a small constant: i.e there is a small acceleration.

• Each point in a frame corresponds to exactly one other point in subsequent frames. I.e points are mu-

tually correspondent. This is listed last because it is not always the case with weather images, and is

not too important if suitable processing occurs after block matching. Generally, the property of mututal

correspondance only holds true for motion of rigid bodies, where there is no rotation.

The idea of motion estimation using blocks matching is similar to template matching, a technique where a

known pattern, or template is compared with an image, by shifting and rotating the template over the image,

and looking at the similarities between the template and the image (see [MSB99], chapter 15, and [GW01],

chapter 4, which deals with template matching in the frequency domain). When the similarity metric is high

enough, the template has been found in the image. Motion estimation expands on this by making the template

a section of an image (the first frame), and searching in exactly the same way.

Typically, motion estimation (across two images) is carried out by diving the images into blocks and then com-

paring the blocks in one image with translated versions of the same blocks in the next image. This is known

as block matching. Comparisons between the image blocks can be carried out in a variety of ways, but as with

most things, there is a trade off involved. In this case, the trade off is between how well the comparisons work

(i.e how good the vectors are), and how computationally intensive they are (i.e how many instructions must be

carried out). Some of the commonly used comparison metrics include:

• The Sum of Absolute Value of Differences (SAVD). A reasonably simple calculation which, unmodified,

takes no account of the mean intensity of the block being examined. This SAVD is a dissimilarity measure,

meaning that identical blocks return a zero result.

SAV D =

N
∑

x=1

N
∑

y=1

|f(x, y) − g(x + u, y + v)| (3.1)

In order to improve the results from the SAVD, it is a good idea to make it mean invariant (i.e to subtract

the mean and make it invariant to intensity changes across blocks).

SAV D =
N

∑

x=1

N
∑

y=1

∣

∣

∣

(

f(x, y) − f(x, y)
)

−
(

g(x + u, y + v) − (g(x + u, y + v)
)
∣

∣

∣
(3.2)

1The output from a motion estimation system could be field of vectors, a set of affine matrices, a system of equations describing the

relationships between the images, or any other suitable way of describing how things have changed. For the purposes of this project, the

output will always be a field of vectors, called a ’motion field’.
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3. MOTION ESTIMATION AND RELAXATION LABELLING 8

• The Sum of Squared Differences (SSD). This is similar to the SAVD, however the terms are first squared,

and then square rooted in order to make the equation independent of the sign of the differeces.

• The Cross Correlation Coefficient (CCC). The CCC technique is more computationally intensive than the

methods listed above. CCC is a similarity measure (giving results between ±1, where a value of 1 means

that the blocks are identical:

ρ =

∑

x,y

(

f(x, y) − f(x, y)
)

×
(

(g(x + u, y + v) − g(x + u, y + v)
)

(

∑

x,y

(

f(x, y) − f(x, y)
)2

)
1

2

×

(

∑

x,y

(

g(x + u, y + v) − g(x + u, y + v)
)2

)
1

2

(3.3)

The CCC is mean invarient, and is based on the cross-covariance of the two images, divided by the product

of their standard deviations. See sections 2.7 and 8.1 in [Cha04].

In [QXWP97] Wu et al. investigated the efficiency of the various techniques, concluding that the CCC provides

results at least as good as the SAVD whilst generally providing better quality results than both the SSD and

SAVD, thereby reducing the number of iterations needed in the next stages of the motion estimation. Most

modern motion estimation systems therefore use the CCC as the metric of choice in motion estimation.

Another important consideration is whether or not it is actually worth considering every block. Generally, and

especially with remote sensed images, there will be some blocks who’s mean or variance is so low that the

information content in that block is next to zero. In these cases, it makes sense to simply disregard such blocks,

giving an overall decrease in processing time. This modification of block matching is not used in video systems,

but is very useful when dealing with remote sensed images, and will be considered in slightly more detail later.

Loci of block centres
in second image

Original Block

r

Figure 3.1: Showing how the two images are searched by translating the block in the second image. The circle

shows an example loci of block centres. Every position that the block is shifted to in the second image leads to

an output ’candidate vector’.

After the comparisons have been carried out each block will have a set of vectors and metric values associated

with it. These must be evaluated for ’goodness’, and the best matches found and incorporated into the output

motion field. Various methods for determining the best vectors exist, and could include:

• Picking the vector attached to the highest valued comparison metric.

• Ranking the vectors according to the goodness of their individual comparison metrics and taking the me-

dian, or some other quartile value.

• Picking the vectors attached to the top n comparison metric values, and sending them for further pro-

cessng. E.g. relaxation labelling.

Sending the output for further processing is particularly useful when the data being examined are not simple.

Images which aren’t considered simple could have all sorts of problems which motion estimation can’t cope with

on it’s own - in particular, objects may not be rigid, and could rotate, or occulde one another. Also, block matching

is not very good at dealing with low contrast data.

The following section introduces an excellent method of ’further processing’ - relxation labelling. It starts with

it’s origins in scene labelling, and then moves on to how it can be developed into a tool for use in motion

estimation.
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Input

Divide image into blocks

Judge block wortihness

Block Match

Relaxation Labelling

Post Filtering

Output

Figure 3.2: A motion estimation and relaxation labelling system.



3. MOTION ESTIMATION AND RELAXATION LABELLING 10

3.2 Relaxation Labelling

3.2.1 Traditional Scene Labelling

Relaxation labelling is a technique which was designed for the labelling of objects in a scene. Imagine a digital

photograph of a scene of, say a landscape (with hedgerows, trees, and a few fences, like figure 3.3). The aim of

scene labelling on such a photograph might be to assign names to each of the objects in the photo, whilst not

requiring any human intervention.

Figure 3.3: An English Countryside Scene (view South from near Newton St. Loe, Bath). Scene labelling could

be used in this example to label the hedges, trees and buildings - and, of course, the sky.

’Normal’ methods would start by assigning arbitrary labels to each object, and then running the resulting lables

through a set of constraints, modifing labels so that they comply. For simple scenes this can be very effective.

However, when a totally consistent labelling can’t be found, the technique totally fails to give a result. It is

also only really suited to segmentation applications, and it is not immediately obvious how one would go about

adapting it to deal with numerical vector data.

3.2.2 Enter, Relaxation Labelling

Relaxation labelling is an iterative type of scene labelling which uses probabilistic methods and is much more

robust than traditional labelling techniques. Whilst not guaranteeing a 100% consistent output, it does always

give some result, and so for situations where there probably isn’t a ’correct output’, it is ideal.

Relaxation labelling based techniques work particularly well where other techniques fail, such as in images

where objects are non-rigid (I.e. clouds), and may occlude or block one another.

Relaxation labelling works by assigning a set of labels to each object in a given set of objects, and adjusting

the probability of each label being the correct one using a set of supporting equations2. Using the Fig 3.3 as an

example, the operation of a relaxation labelling system can be described as follows:

2Known in this report as ’support functions’
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1. Assume that the scene has been segmented (I.e. it is ready to be labelled).

2. Assign every label to every object in the scene.

3. Assign an initial probability to each label given to each object:

• These probabilities could be be based on equation describing, say the shape of a tree, or hedge.

• Normalise the probabilities given to each object’s labels.

• The output from this stage should be a set of probabilities describing the ’treeiness’ and ’hedgeiness’

(etc.) of each object in the scene.

4. Use the support functions to gauge the consistency of each label in each object with it’s neighbours. Adjust

the probabilities accordingly.

5. Loop to step 4, unless the condition to stop 3 has been reached.

6. The output should be a (hopefully) consistent labelling scheme, where the label with the highest probability

belonging to each item is taken as the output label.

A typical (contrived) example might be a desk, where the objects could include a phone, a monitor and a mouse.

A relaxation labelling scheme would give each object on the desk a probability that it was a mouse, a phone or a

monitor based on it’s characteristics, and then adjust those probabilities according to the neighbouring objects

labels and their probabilities.

Moving from labelling scenes to labelling vectors may seem like a large step, but if you think of the each block

of an image as a one of the objects above, and each candidate vector as being one of the labels for the block, the

idea is instantly portable - with a few small changes.

Initially, the probabilities must be set using a block compatibility metric. Generally the metric used is the cross

correlation coefficient (CCC). Initial probabilities are set using normalised CCC values.

Second, the equations which judge compatibility with the local objects need to be rewritten to take account of

the fact that that the labels are now vectors, and so the comparisons must essentially be made between the

actual labels themselves. This means that instead of a single label (identifying an object as being say, a desk

or chair) the label will have two components (in x and y). It is therefore useful to keep the candidate vectors in

some kind of data structure, and to think of the vector as both a ’label’ and a standard vector.

The relaxation labelling method being used throughout this report will be the same method as employed by

Evans ( [Eva00]), which will be described in detail below. It has been shown that using relaxation labelling

following motion estimation using a CCC metric (on remote sensed data) produces reasonable results where

other techniques fail. This is beacuse using CCC produces good matches to start with, and relaxation labelling

is highly robust to noise, and non-rigidity.

3.2.3 Relaxation Labelling In Detail

As explained above, relaxation labelling relies on a system of equations to get results, the order of events is

shown schematically in fig 3.4.

Initial Probabilities

To start with, the proabability attached to each label (vector) in every block must be initialised. This is done by

normalising the comparison metric value obtained during block matching. When using the CCC, the formula is

the following:

P (0)(J → j) =
ρ(J → j)

∑

λ∈Ω2J
ρ(J → λ)

(3.4)

3The stop condition could be anything. E.g. a fixed number of iterations
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Initial Probability Setting

Relaxation Labelling
Formula

Nested Support Functions

Loop until stop criterion met

Candidate Vectors
Input:

Output: 
Motion Field

Figure 3.4: Relaxation labelling flow diagram.
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Becuase of equation 3.4’s reliance on the comparison metrics mentioned in section 3.1, it is very important

that the metric used is as good as practically possible. Having a really good metric will reduce the number of

relaxation iterations needed.

Relaxation Labelling Formulae

After the initial probabilities have been set, the proababilities can be iteratively updated using the non-linear

relaxation formula and it’s various support functions.

The first equation updates the vector probability according to the current probability and a non-linear support

function Q which judges neighbouring vector compatibilities. The probabilities are also normalised across each

template, so the the sum of all probabilities in a given template is one, as equation 3.5 shows, this is fairly

simple.

P (n+1)(J → j) =
P (n)(J → j)Q(J → j)

∑

λ∈Ω2J
P (n)(J → λ)Q(J → λ)

(3.5)

Q (equation 3.6), the first support function computes the product of sums of each candidate vector in the local

neighbourhood 4.

Q(J → j) =
∏

I∈Gj

∑

i∈Ω2j

P (n)(I → i)R(I, J, i, j) (3.6)

R (equation 3.7) judges the compatibility between the vectors J → j and I → i. For this reason, it is known as

the compatibility function.

R(I, J, i, j) = exp

[

|∆xI,i − ∆xJ,j |

σ

]

. exp

[

|∆yI,i − ∆yJ,j |

σ

]

.D(I, J) (3.7)

The compatibility is evaluated using the differenced x and y displacements of the vectors being examined. σ is

called the global ’displacement variance’, and controls the rate at which the output converges on a final value.

By now, it should not come as a surprise that there is yet another nested support function: D. This function

depends on the relative position of the current blocks, as well as a constant, g. Put simply, D decides if blocks J

and I are neighbours, returning zero if not, or a measure of their proximity if they are.

The variable DI,J , is the a measure of the distance between the blocks, relative to the block spacing, rather than

the pixel spacing.5

D(I, J) = max {0,D0 − DI,J} .g (3.8)

The final descision to be made is when to stop iterating. There are several ways of deciding this, including:

• Reaching a certain number of iterations.

• Reaching a certain critical probability in each block.

• Setting a maximum bound on the time available for iterating.

Once the relaxation labelling is done, the output field can be made by simply taking the vector with the highest

probability from each block.

The next section discusses post filtering, specifically using the vector median filter.

4The local neighbourhood is the set of blocks considered ’local’ to the block being updated
5I.e adjacent blocks would be a distance of 1 apart, not a n pixels.



3. MOTION ESTIMATION AND RELAXATION LABELLING 14

3.3 Post Filtering

After relaxation labelling, the output field may not be as smooth, or consistent as desired. In these cases, it is a

good idea to use some kind of a post filter to help smooth the data, and add the desired consistency.

One particularly good post filter is the adaptive vector median filter.6 This filter works using a fixed window

size (of say, 3 × 3), and computing the median vector of the window members. It then calculates the central

difference relative to the median value, and if they differ by more than the absolute vlaue of the median vector,

multiplied by a factor, k (known as the smoothness constaint) the centre vector is set to the median vector. The

constraint can be summarised by the following equation:

|∆yc − ∆ym| + |∆xc − ∆xm| > k |∆ym| + |∆xm| (3.9)

3.4 Extending Motion Estimation

This section discusses the second and third questions mentioned in the introduction: When is multi channel

data useful? How can this usefulness be gauged? and How can traditional ME systems be adapted to make use

of multi channel images?, after a brief discussion of why it might be useful.

In order to improve the quality of the motion field obtained from block matching and relaxation labelling, it has

been suggested that where available, multipl channels could be used. This should have the effect of increasing

the overall quality of the motion estimation output (i.e. the motion field), because more information will have

been used to obtain it, and the availability of good quality candidate vectors will be higher.

In order to develop this idea further, a few concepts must first be developed. This first of which is what, exactly

is meant by multiple channels.

3.4.1 Multi Channel Data

Typically, we think of multi channel data as being things like colour images, where there are three, very well

defined data channels. In fact, lots of data are multi channel, and colour images have very little different

information across the channels7.

For the purposes of this report, the definition of a multi channel image will be:

Any data set which can be displayed spatially, in overlapping layers, with separate layers being

comprised of data from a different frequency band, set of calculations, or observations.

This definintion allows all sorts of (not necessarily obvious) data to be considered a multi channel image, in-

cluding atmospheric data gathered using integration models8, and satellite data showing cloud tops in infrared,

water vapour, and normal visible wavelengths9.

3.4.2 Judging Channel Information Content

Deciding whether to bother combining the channel data is one grey area. Intuitively, for the best possible

results, the diversity between channels should be high enough that the same objects are being represtented,

but low enough that the channels do not simply duplicate one another. If the channels are too similar, the

candidate vectors will be ’wasted’ by duplication, thereby contstraining the output field more that is desirable.

Channel diversity can be judged by using the cross correlation coefficient, discussed in section 3.1. The use of

such a metric to judge the diversity can be justified by the fact that the mean intensity level is ignored, and

the fact the the cross corrrelation coefficient results in a similarity measure. The fact that it is already widely

used for comparisons in signal processing add The fact that it is already widely used for comparisons in signal

6The vector median has been shown to be the optimal noise reduction filter for certain types of impulsive and non-impulsive noise.
7When described by the typical RGB model.
8Such as the data provided by the TSAR group at the University of Bath
9Such as the data available from the Dundee University Earth Station
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processing adds further weight to this argument. This issue of exactly how diverse the channels need to be will

need further investigation.

3.4.3 Combining Channel Data

Most of a ME system which uses multiple channel data will work in exactly the same way as a single channel

system. Block matching will still need to be carried out on each channel individually, and relaxation labelling

doesn’t care about the origins of the vectors it operates on, as long as there are probabilities attached. It is only

the steps between block matching and relaxation labelling that need to be modified, or indeed added.

The combination of the channel data is more an issue of implementation than anything else, possible methods

could include:

• Choosing the top n candidates from each channel, and using all of them. - An equal number of the candi-

dates used come from each channel. This method could be called non-competitive combination.

• Putting all of the candidates together, and picking the top n, such that all of the candidates are in direct

competition, and there is no guarantee that equal numbers of candidates from each channel will be used.

This could be called competitive combination.

• Weighting the number of candidates somehow, such that a certain fraction comes from each channel.

It is not immediatly obvious how such as scheme could work. Such a method could be called weighted

combination.

Because of the way in which relaxation labelling works, any candidate vectors could be passed in, inside of any

given template, and be operated on as if they started out there.

The following chapter deals with the implementation of a motion estimation with relaxation labelling system

toolkit, after a brief introduction to the tools used to design such a system.



Implementation

4.1 Introduction

From the previous chapters and sections, it can be seen that the following items need to be implemented in

order to create a working relaxation labelling system, and answer the last two questions from the introduction.

1. Efficient code implementing block matching.

2. Efficient code implementing relaxation labelling.

3. Efficient code supporting the above two deliverables where necessary.

4. Modifications of the above code in order to analyse different techniques and ideas in relaxation labelling.

This chapter works through the implemetation that was carried out, describing the tools and languages, and

functions were been written in order to fulfill the above criteria.

4.2 Tools

The section briefly describes the tools used throughout the project, including the programming language, editor

and supporting software.

4.2.1 GNU Octave

GNU Octave is a free, open source Matlab clone, designed for doing numeric computations. Octave has several

advantages over Matlab for this project, including:

• Being free, meaning no expensive license is needed.

• Being open source, meaning that if necessary, bug can be fixed, and Octave recompiled by end users.

• Having a published manual [Eat97], excellent support mailing lists, and a friendly and helpful online

community.

• Not being encumbered by a large GUI, whilst some people like a large programming environment, others

prefer a text editor and terminal; Octave caters for the latter.

4.2.2 Revision Control

In [HT99], Hunt and Thomas devote a section to discussing the use of revision control systems, coming to the

conclusion that you should ’Always Use Source Code Control’. This project will use the subversion1 revision

control system, so that bugs can be traced, and changes tracked. One of the main advantages of version control

is the fact that they allow ’rolling back’ a file to a previous version - perfect if something breaks.

Subversion is an open source revision control system which was written to address some of the problems and

shortcomings of CVS (concurrent version system). In particular, subversion adds the ability to move, delete and

rename files. It also tracks the version number of the whole directory together, so there is no need to worry

about specific versions of each file. All commits are also totally atomic in Subversion, meaning that problems

with the repository are easier to fix, and tend not to break things.

1Subversion homepage: http://subversion.tigris.org/

16
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4.2.3 Gvim

Gvim is an excellent programmer’s editor. It builds on the unix tradition of vi, adding syntax highighting,

automatic indentation, online help and a plugin architecture. For this project, the existing Matlab syntax

highlighting has been extended to work with Octave’s extra keywords endfor , endfunction etc. Also, the

taglist plugin has been extended so that it can use ’m’ file tags (see below).

4.2.4 Ctags

Ctags is a program which indexes function names, along with the file that the function resides in, the idea

being that the function name can be followed, from within a text editor to allow quick editing. The index

contains entries called ’tags’. For this project, ctags has been extended to read ’m’ files, so that the gvim editor

can use the tags generated.

4.3 Code Style

Like most programming languages, Octave code can be written in many different styles. This section briefly

describes the style used throughout this project, such that a third party would be able to read and understand

the code if necessary. It should be noted, however that there is no right or wrong code style, so if needs be,

extensions could be written however the programmer wants. Code has generally been written such that it

should be compatible with both Octave and Matlab, although it has not been tested in the latter.

Function & Variable Naming Conventions

Although variable names like i and j have been used for counters, and indexing, most variables have been

given longer, more descriptive names, such as candidateMatches , where spaces have been removed, and

words after the first have been capitalised to make the names easier to read. In general, the first part of

the variable name describes the specifics of the variable, and the second part describes what type of data the

variable holds. combinedCandidateMatches for example refers to a structure array of candidate matches

created by combining two or more sets of matches. Function naming follows the same conventions.

Structures

At the top level, structures are simply variables, and so follow the same conventions as described above.

Function Definitions

All functions used at the top level, i.e. for use by an end user, take arguments of the same format (shown in

figure 4.3).

functionName( candidateMatches, blocks, [info], [other arguments])

Figure 4.1: Function definition format.

Where items in square brackets are dependent on the requirements of the function. Help is available for all

functions that have been written by issuing the help command, as is the case with most Octave and Matlab

functions.

help functionName

Figure 4.2: Getting help in Octave
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4.4 Data Structures

Data structures are a very important part of any complex program, or system because they represent the re-

lationships between data. Using good data structures can have a huge impact on the readability and use of a

program.

Structures in Octave are similar to those in C, except that they are somewhat less strict. They do not need to be

declared, or inititalised, and the same field in two different elements of an array of structs need not share the

same type.

a(1).s = 1
a(2).s = ’string’

Figure 4.3: Array field types are in no way constrained.

There are three main data structures used in the motion estimation and relaxation labelling code, these are

the info struct, which hold general, global inforation. The block struct, which hold information on the blocks

used for block matching, and then relaxation labelling, and finally, the candidate match structure, which hold

information on the candidate vectors created by block matching, as well as the probability information used by

relaxation labelling.

Struct Access

Unfortunately, there are some quirks to accessing struct information in both Matlab and Octave2. While the

accessing only one element of a nested struct works fine in exactly the way one would expect:

candMatches(1).cands(1).p

Figure 4.4: Accessing an individual field in a doubly nested struct.

Occasionally it is necessary to extra information from more than one of the nested structs. In this case, the

expected access method doesn’t work as expected, and a comma-separated list is returned. In order to get

around this, the following syntax should be used:

matches = candMatches(1:10);
% Access members as structs, instead of cs-lists.
u = {matches.cands}{1}.u;

Figure 4.5: Accessing more than one field in a doubly nested struct.

The above example shows how to access the u field of several members of candidate match struct, and works by

casting the output cs-list into a cell array.

General Information Structure

• Size: Single element.

• Members:

– blockSize : The size of the blocks the image has been split into, in pixels.

– searchSize : The radius of the search used in block matching.

– frameRows : The number of rows in the current frame.

– frameCols : The number of cols in the current frame.

2Since Octave attempts (for compatibility) to emulate Matlab’s behaviour.
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– blocksPerRows

– blocksPerCol : The number of blocks per rows or columns for the current frame.

– totalBlocks : The total number of blocks in the current frame.

– g: Relaxation labelling constant.

– sigma : Relaxation labelling constant.

– d0 : Relaxation labelling constant. Size of local neighbourhood.

Block Structure

• Size: variable - info.totalBlocks.

• Members:

– x1

– y1

– x2

– y2 : Block corner coordinates.

– var : The variance of a given block.

– mean: The mean of a given block.

– ok : Whether a given block will be used in precessing.

– cands : A structure containing block candidate matches.

Candidate Match Structure

• Size: variable - depends on number on candidates and therefore search size and block position.

• Members:

– u

– v : Candidate vector coordinates.

– c : Cross correlation coefficient for candidate vector.

– p: Probability for candidate vector. Sum of probs for a give blocks candidate matches should always

be either 1, or 0 (if block is ignore).

– localDists : Information used in relaxation labelling support functions.

4.5 Block Matching

Before block matching occurs, the blocks must be created. That is, the co-ordinates of each block must be set.

This is done by the function getBlocks , which examines a frame, and produces a struct containing the right

number of blocks, with the necessary information attached to those blocks.

After the blocks have been created, the function checkVariance should be run. This function also examines the

content of each block, checking that the variance is above a certain threshold, and setting the block struct’s ok
field if it is. By setting this field, only blocks which are worthy of being examined are used in the block matching

process. checkVariance can also test that the block’s mean is above a given threshold value, although this is

somewhat less useful.

The function activeBlockPlot generates a checkerboard plot showing which blocks are active, and which

are inactive. It takes a block struct, an info struct and an output filename as argument, and works by saving
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the block.ok field, and then calling a Ruby3 script which loads the field from the file, and then creates a

checkerboard pattern showing which of the blocks are active, and which aren’t. Since there is no obvious way

of making Gnuplot draw grids of filled squares, using Ruby seemed like a reasonable way of getting the desired

output with minimal extra work.

The code for block matching is very simple. It loops over a block structure, comparing sections of two given

frames using a two deminsional CCC. Various checks are carried out to ensure that it is worth taking the CCC,

such as checking the mean, and checking that the block is actually inside the image. The output CCC, and the

x and y components of the displacement vector are written into a cands struct within the block structure which

was passed in - this new, modified block structure is then returned.

The CCC function is vectorised for speed, and simple test showed it to be as many as 15 times faster on test

data when compared to the loop based version.

4.6 Relaxation Labelling

The code implementing relaxation labelling goes through each of the steps discussed in section in turn, with a

few small changes to the funtionality in order to improve the overall speed.

First, the function initialRelaxProb initialises the probabilities, and writes them into the candidate match

section of a block structure. This structure is updated throughout the relaxation labelling steps, and is not the

same structure as the one describing the blocks positions etc.

Then, before the relaxation labelling takes place, the function getNeighbourVectorDists calculates the dif-

ference between each vector displacements and it’s neighbours displacements, and computes the value of the

support function R (equation 3.7). These values are then written into the block structure, which does not change

again for the duration of the relaxation labelling. This step is done before the relaxation labelling occurs, be-

cause it only needs to be done once, thereby decreasing the overall complexity of the computations.

Next, the structure returned by the initial probabilitiy setting function is passed to the function

relaxationLabelling . This function is a loop, which iterates over the blocks it has been passed, calling the

function relaxationLabellingSingleBlock . In this function, each candidate match in the given block is

processed in turn, and then the probabilities are normalised, as in equation 3.5.

Figure 4.6 shows the function called within the main relaxation labelling function.

The algorithmic complexity of the above steps is very large, and computation time grows exponentially with the

number or canidate vectors. For this reason, it is a good idea to keep the number of canidates as low as possible

- from experiementation, 40 seems to be a good number, although iterations still take a long time, and it is a

good idea to let the system run overnight.

4.7 Post filtering

The implementation of post filtering makes use of two main functions, postFilter and vectorMedian .

postFilter takes the standard argument list (i.e a candidate matches struct, a block struct, and an info
struct), with the addition of a variable which sets the convergence rate k.

postFilter starts by extracting the x and y vector displacements from each active block in a three-by-three

window, and then calculating their vector median. The vector median 4 function constructs a table of vector

distances5 sums the rows, finds the row with the minumum total and returns the vector assiciated with that

row as the median. This method is both intuitively easy to follow, and computationally efficient.

3Ruby is an OO scripting language, which is very easy to both read and write, and has bindings for many handy libraries, such as

imblib2 which the script makes use of in oder to construct the board. [TH00] is an excellent introduction and reference for anyone inter-

ested in learning the Ruby language.
4As described by: [JA90]
5Where a vector distance can be defined by |a − b|n, where a and b are vectors, and n is a real integer. The Pythagorean distance is

obtained when n = 2
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relaxationLabellingSingleBlock

supportQ

relaxationLabelling

Cands struct data in.

supportD

Adjusted probabilities

Figure 4.6: Relaxation Labelling Functions as implemented.

After calculating the median values, the central difference is taken (relative to the median), and if the values

differ more the a certain thresholded amount, the median is taken as the value of the central block. The process

then repeats for all other active blocks in the image.

4.8 Support Functions

Various functions were written to support other the other core functions in the suite. A few of the more impor-

tant ones will be discussed here.subsectionGeneral Functions

checkArgs : Octave does not enforce function prototypes, and does not require the ’type’ of arguments to be

defined. Whilst this is quite useful in some situations, sometimes more rigidity is useful in debugging, and

ensure the function runs as expected. For this reason, a function was writted which takes the number of

expected arguments, and then a list of the argument names with strings describing what type they should be.

Placing lines of the following form at the beginning of a function raises an error if anything is wrong with any

of the arguments:

Where arguments could have more that one possible ’type’, the string argument can take the form ’type1,type2’ ,

allowing greater flexibility.

getMinPos and getMaxPos expand on the min and max build in functions which only return one coordinate
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% Check arguments.
if ˜checkArgs(3, nargin, blocks, ’struct’, info, ’struct’ ,

outputName, ’string’)
error(’Argument Error’);

end

Figure 4.7: Using the checkArgs function.

describing where the maximal or minimal element lies. These two function return both the row and column of

the max. or min. element, and find use in the vector median filter among others.

var2 and mean2 are simply syntactic sugar, that is, they just wrap the standard 1D variance amd means

functions, and perform them twice, giving the 2D variance and mean. This makes the code more concise and

easy to follow. These functions are used in check for active blocks, and block matching.

vectorDist is a function uesd by the vector median filtering function which calculates the ’distances’ between

vectors.

4.8.1 Block Manipulation and Information Functions

blockNoToxy and xyToBlockNo convert from block numbers to block coordinates and visa versa. This is

very useful, since the block structure is addressed by block number rather and by coordinates, and converting

between the two is a common requirement.

getLocalBlocks return the blocks which are the neighbours of a given block, out to a given distance (usually

defined by the d0 field in the info struct).

getRanges converts the x1,2 and y1,2 fields from a block struct into ranges, which are then used in block

matching.

4.8.2 Saving and Plotting Functions

As well as the functions for plotting active blocks (described in full in 4.5, there are several functions which

assist in plotting and saving data. These are described below:

saveData does exactly that: it saves the data passed to it after transforming the data to make them easier to

plot.

The first operation that occurs is thresholding, by choosing only the higest valued vectors. The value which is

examined depends on whether the relaxation labelling probabilities exist. If they do, the match with the highest

probability is used (and the function getHighestProbs is called), and if they don’t, the vector with the highest

CCC is used (the function called in this case is getHighestProbs ).

The second operation converts the threshold candidates into a form ready for plotting using Gnuplot’s vectors

style, and involves squeezing the candidate vectors into a matrix, where the column used is determined by the

channel from which the vector originates. The function which carries out this conversion is candsToMatrix .

The vector displacements are also normalised.

Finally, the data are saved.

plotData takes a filenameand whether the data are single or multi-channel as arguments, and plots them.

The plotting is not done directly, however, since there are no vector plotting functions in Octave. Instead, a shell

script builds a gnuplot script which is then executed. This complicated sounding scheme allows the plot’s title to

be set, and the correct type to plot to be generated with minial effort, since the plotting scripts effectivly ’wirte

themselves’ - a technique called metaprogramming.
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4.9 Using the Toolkit

Using the motion estimation and relaxation labelling toolkit is simple. The following figure shows how to load,

and process two images using ME and RL. Obviously, extending the example to include more iterations would

be simple, as would changing the position of the thresholding to change how the candidates are chosen.

% Load up various images.

irFrame1 = imread(’frame1 frame1.jpg’ );

irFrame2 = imread(’image1 frame2.jpg’ );

wvFrame1 = imread(’image2 frame1.jpg’ );

wvFrame2 = imread(’image2 frame2.jpg’ );

% Set the important variables in info.

info.blockSize = 17; info.searchSize = 25;

[info.frameRows, info.frameCols] = size(irFrame1);

info.blocksPerRow = ceil(info.frameRows/info.blockSize);

info.blocksPerCol = ceil(info.frameCols/info.blockSize);

info.totalBlocks = info.blocksPerRow∗info.blocksPerCol;

info.g = 1.5; info.sigma = 2;

info.d0 = info.searchSize;

% Get the block ranges for the first channel.

irBlocks = getBlocks(irFrame1, info.blockSize);

% Mark blocks according to variance:

irBlocks = checkVariance(irBlocks, irFrame1, info, 1e4, 0);

% Run block matching on the first channel.

irCandidateMatches = blockMatch(irFrame1, irFrame2, irBlocks, info);

% Repeat for the second channel.

wvBlocks = getBlocks(wvFrame1, info.blockSize);

wvBlocks = checkVariance(wvBlocks, wvFrame1, info, 1e4, 0);

wvCandidateMatches = blockMatch(wvFrame1, wvFrame2, wvBlocks, info);

% Combined the channels.

combinedCandMatchesPreThreshold = catCands(irCandidateMatches, \
wvCandidateMatches);

combinedBlocks = catBlocks(irBlocks, wvBlocks);

% Threshold the combined channel data.

combinedCandMatches = thresholdMatches(combinedCandMatchesPreThreshold, \
combinedBlocks, 40, 0);

combinedCandMatches1 = getNeighbourVectorDists(combinedCandMatches, \
combinedBlocks, info);

% Initialise the probabilities.

combinedCandMatches2 = initialRelaxProb(combinedCandMatches1, combinedBlocks);

% Run RL once.

combinedCandMatches3 = relaxationLabelling(combinedCandMatches2, \
combinedBlocks, info);

Figure 4.8: Using the toolkit functions.

For information about the other available functions, see section 4.8.



Results

5.1 Introduction

This gives a brief introduction to the data sources used throughout the project, before presenting results for

experiments on active blocks, and single and multi-channel motion extimation and relaxation labelling. General

observations may accompany the figures, by conclusions will not be drawn until the final chapter. All motion

estimation was carried out using a search size of 25, which was determind by examining the input data. Also,

all block sizes except those which are varied in section 5.3 are fixed at 17.

5.2 Data Sources

There are several sources of multi channel remote sensed data that could be used with the motion estimation

and relaxation labelling software. The two main sources of data used in this project are images provided by the

Dundee Satellite Receiving Station (DSRS), and data provided by the TSAR group at the University of Bath.

The DSRS provide a wide variety of images, gathered by the Meteosat stationary satellites1. Meteosat-8 - a

body spun platform [TD01], which sits in the geostationary orbit at 3.4°W - is of particular interest because it

is capable of gathering data in 12 spectral channels.

The TSAR data is derived from resampled Nimrod and UM weather data, and can provide a variety of different

channels at various spatial and temporal resolutions. Generally, data takes the form of ’attenuation of x due to

y’ - an example of data which can be shown as an image, although it isn’t actually optical in nature. Whilst ex-

trmemely useful, the fact that the results are ’generated’ rather that actual measurements means that they are

not necessarily as linked to one-another as one might hope. I.e rain attenuation and gaseous oxygen attenuation

might be representative of different heights in the atmosphere, or represent data about the entire atmosphere

and so may not be the ideal data to use. For this reason, although initial experiments were done using the TSAR

data, most of the actual relaxation labelling results have been derived using DSRS data. Figures 5.1 and 5.2

show the two frames of each channel used to test the toolkit and to evaluate the effect of relaxation labelling.

5.3 Active Block Results

As mentioned in section 5.3, the issue of which blocks are active in an image is a fairly important and useful

way of reducing the complexity of the system. The main problem however, is what variance should be used for

the threshold function. This section shows how the number of active blocks varies with the variance threshold,

for the IR and WV channels of the DSRS data. Figures 5.3 and 5.4 shows how the percentage of blocks which

are active changes with block size and variance threshold. There is a clear decrease in the number of active

blocks when the block size is smaller - this is almost certainly due the fact that a small block will contain fewer

features (and therefore a lower range of values) than a larger block. Because of the reasonably high channel

correlation, the two graphs are fairly similar.

The distribution of the active blocks is also fairly interesting, and, as mentioned previously, can be plotted fairly

easily using the Ruby script for that purpose by using it’s octave wrapper function. The following figures show

how the active blocks are distributed using a block size of 9-by-9 pixels, for both the IR and WV channels. As

the variance threshold increases, more and more blocks are removed, corresponding to areas with progressivly

higher thresholds. Figures 5.5, and 5.6 demonstrate how the changes occur.

1There are four of them, see http://www.eumetsat.int for more information.
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5.4 Single Channel Results

This section shows the results gathered after running ME and RL on single channel DSRS data. The data is

described in section 5.2, and was downsampled by a factor of two, before block matching, and then 7 iterations

of RL. s mentioned previouslty, in all results, the block size is 17, and the motion estimation search size is 25,

which is more than enought to enclose any movement. See Figures 5.7 through to 5.12.

5.5 Multi Channel Results

5.5.1 Non-Competitive Candidate Match Combination

This section shows the results gathered using downsampled DSRS IR and WV data2 , spaced 6 hours apart,

and run through 7 iterations of relaxation labelling, before finally post filtering with a vector median filter.

The candidate matches were combined using a non-competitive method, whereby the top 20 candidates from

each channel were take, and combined by straight concatenation. The only competition that between channels

occured in the relaxation labelling functions. The results can be seen plotted in figure 5.13 and 5.14, where the

different colours represent data from separate channels.

5.5.2 Competitive Candidate Match Combination

The data here is exactly the same as used in section 5.5.1, except that instead of combining the candidate

matches without any competition, all of the candidates were ranked, and only the top 40 of the entire set was

taken. The meant that there was direct competition between channels at the very beginning. The results are

plotted in figure 5.15, and 5.16, which show where the different output vectors come from.

2See figure 5.1 and 5.2.
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Figure 5.1: The IR Channel of data for March 3 2005 at 1200 and 1800.
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Figure 5.2: The WV Channel of data for March 3 2005 at 1200 and 1800.
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Figure 5.3: Active blocks in the IR channel for various variances.
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Figure 5.4: Active blocks in the WV channel for various variances.
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Figure 5.5: Active blocks in the WV channel for various variances. Starting at the top left, the variances are

101, 102, 103, 104, 105, 106.
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Figure 5.6: Active blocks in the WV channel for various variances. Starting at the top left, the variances are

101, 102, 103, 104, 105, 106.
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Figure 5.7: The result of motion estimation followed by four iterations of RL on a downsampled IR channel.
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Figure 5.8: The 3-5 iterations of relaxation labelling on a single IR channel.
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Figure 5.9: The 6th and 7th iterations of RL, followed by the post filtered output for downsamples IR data.
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Figure 5.10: The result of motion estimation followed by four iterations of RL on a downsampled WV channel.
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Figure 5.11: The 3-5 iterations of relaxation labelling on a single WV channel.
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Figure 5.12: The 6th and 7th iterations of RL, followed by the post filtered output for downsamples WV data.
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Figure 5.13: Dual Channel Motions Fields using non-competitive combination of candidaites. The images rep-

resent: The highest vector output after block matching, one iteration of relaxation labelling, two, three, four,

five, six, seven iterations, and finally, the output after vector median post filtering.

Figure 5.14: A diagram showing where the output vectors come from. The two different colours/shades represent

the two channels, and the square blocks represent the blocks used in block matching to generate the candidate

vectors.
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Figure 5.15: Dual Channel Motions Fields using competitive combination of candidaites. The images represent:

The output after block matching, one iteration of relaxation labelling, two, three, four, five, six, seven iterations,

and finally, the output after vector median post filtering.

Figure 5.16: A diagram showing where the output vectors come from. The two different colours/shades repre-

sents the two channels.



Conclusions

6.1 Introduction

This aim of this chapter is to answer the final two questions from the introduction, namely:

• How well do the adapted techniques work on multi-channel remote sensed data?

• How can the above findings be used in practice, and how could they be used in the future?

First, the results gathered for single channel data will be analysed, and then the main issue of the multi-channel

data will be tackled. Finally, some of the issued surrounding the last question will be examined.

6.2 Single Channel Data

As it stands, there isn’t a lot that can be said about the single channel data. The post filtered outputs are

clearly ’more consistent’ than the input to the relaxation labelling stages, and appear to adhere more closely

to the motion in the original frames. The RL iterations also appear to gradually improve the output quality,

as expected, and the IR and WV output are also very similar in their general shape and flow1. The logical

conclusions to draw from these findings is that the ME RL system actually works; which is good.

’irwvDiff.dat’ using 1:2:3:4

Vector Motion Field

6543210

7

6

5

4

3

2

1

0

Figure 6.1: Vector differences between single IR channel and single WV channel outputs.

Figure 6.1 shows the differences between the motion fields from the IR and WV channels - the fact that they are

different demonstrates the channel diversity.

1See figure 6.1
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6.3 Multi-Channel Data

Unfortunately, it isn’t possible to quantify the quality of any of the output data - there is simply no baseline (or

correct) output field. Instead, observations must be done, and other metrics used to compare the data. Possible

observations and metrics could include the vector differences between the output fields for different types of

processing, examining the channels that the output data uses for each block, and judging the overall quality of

the fields relative to one-another. Figures 6.2 through to 6.4 show each set of (normalised) results subtracted

from each other in sequence. It is interesting to note the lack of differences between figures 6.3 and 6.4, only a

very small number of the vectors show any major difference at all, indicating that despite the differences which

are apparant in figure 6.2, overall, the two multi channel output fields are fairly similar. In fact, the main

differences occur beacuse of the differences in which blocks are active.
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Figure 6.2: Vector differences between the competitive and non-competitive combination outputs.
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Figure 6.3: Vector differences between the dual channel competitive, and single IR channel outputs.

Some strong features exist throughtout all of the set of data, in particular, there is an interesting structure in

the bottom centre of all of the final output fields, where the vector on the left and right face one another. This is
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Figure 6.4: Vector differences between the dual channel non-competitive, and single IR channel outputs.

presumably present in all of the output motion fields because of the strength of the CCC values, and therefore

the high probabilities assigned to those particular vectors.

Examination of the multi-channel motion fields also shows the origins of the different vectors in the outputs (dif-

ferent colours/shades indicate different channels). It is interesting to see how the origins change over the course

of the RL iterations, with some vector’s origins oscillating between two channels. Where output is strongly

tied to one particular channel, the logical assumption is that the ME comparison metrics were higher for one

particular channel in that area, indicating a very useful property of the multi-channel ME system:

Areas who’s outputs are weak in one channel may be strong in others.

Interestingly, when the candidate combination is competitive, the number of vectors originating in each channel

is far from equal, with only a few vectors coming from one of the channels, and the majority coming from the

other. With the non-competitive combination, the distribution is more of less qual, with large blocks of vectors

coming from each channel.

Non-competitive Combination results in large areas where all of the vectors come from one channel.

Also, both of the combination methods appear to result in vey similar, and fairly consistent vector motion fields.

To further reinforce the above conclusions, a far larger sample must be researched, however the results pre-

sented should give a general idea of the properties of multi-channel estimated fields.

6.4 Practical Uses: Present and Future

The most obvious practial use for such a system would be in meteorological prediction, where a RL generated

field could be used to predict the movement of clouds, rain or other data that can be displayed as an image. The

high computational cost of the scheme would also prove less of a problem, since it is not uncommon for weather

prediction centres to have supercomputers.

Use in defence systems would also be a logical extension of the multi-channel ME-RL scheme, provided it could

be made to run faster (see section 6.5). Possible uses might include RADAR systems, object tracking (or possibly

even automated missile defense systems). A system could use visible images, SAR data and even IR data to

improve locking on incoming targets.
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Figure 6.5: Vector differences between the dual channel competitive, and single WV channel outputs.

6.5 Future Developments

Possible developments that could be made to this project in the future include:

• The analysis of more sets of data. Data sets need not be ’remote sensed’, and could include data from

various other sources.

• Rewriting the toolkit in C, or C++ would provide large speed gains, especially since a lot of the code makes

use of for loops, which are much faster when optimised by a compiler. The design of the code could closely

mirror the current Octave code, even down to the data structures used.

• Extending the results to more that two channels would also be interesting, and might provide more insight

into the ’competition’ between candidate vectors.

• Further research into available speed gain would be interesting, as a faster version of such a system could

find use in defence systems, like RADAR object tracking for example.

• Eventually, there is no reason why a ME RL system could not work in three spatial dimensions. The

computational cost would increase further still, because relaxation labelling would have to include many

more neighbours, but there is no conceivable reason why it could not be done.
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Figure 6.6: Vector differences between the dual channel non-competitive, and single WV channel outputs.
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Source Code and Other Motion Fields

See the attached CD, which contains:

• Project code

• The full Subversion repository used to keep all revisions of the code. This will allow access to past version

of all functions, as necessary.

• Compressed results. Results of ME RL using various block sizes and search sizes with and without post

filtering. The results are compressed because uncompressed they amount to 4GB of data.

• Semester One report.

• This report.
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